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Adversarial Learning

Daniel Lowd, Christopher Meek



Overview

* adversarial classifier reverse engineering (ACRE) learning problem
* minimal adversarial cost  MAC) & ACRE learnable
* K-IMAC & ACRE k-learnable

 Find IMAC for continuous features & boolean features



Problem Definition — Notation

* X: instance space

* X;: features (may be real, integer, Boolean, etc.)

* X € X: intances

* x;: value of the ith feature 1n instance x

* C: classifier, a function from instances x € X to {0,1}
* positive instances: instances x for which c(x) = 0

* negative instances: instances x for which c(x) = 1



Problem Definition — Assumption

* The adversary can i1ssue membership queries to the classfier for
arbitrary instances;

* The adversary has access to an adversarial cost function a(x) that
maps instances to nonnegative real numbers;

* The adversary is provided with one positive instance, x™, and one
negative instance, X~ .



Problem Definition — IMAC

* minimal adversarial cost (MAC) of a classifier ¢ and cost function a:
the minimum cost a(x) over all instances x classified negatively by ¢
MAC(c,a) = min a(x)

x:c(x)=0
* instances of minimal adversarial cost IMAC): the set of all instances
x classified negatively by ¢ and with minimal cost

IMAC(c,a) = {x € X|a(x) = MAC(c,a) and c(x) = 0}

* adversarial classifier reverse engineering (ACRE) learning problem

for classifier ¢ and adversarial cost function a: find an instance x €
IMAC (c, a)



Problem Definition — ACRE learnable

* a set of classifiers C 1s ACRE learnable under a set of cost functions A:
if an algorithm exists that, for any ¢ € Cand any a € A, finds some
x € IMAC (c, a) using only polynomially many membership in:

(1) n: the number of features
(2) size(c): the encoded size of ¢

(3) size(x™, x7): the encoded size of the positive and negative instances
(assume to be encoded as strings of digits in a known, fixed base)



Problem Definition — k-IMAC & ACRE k-
learnable

* k-IMAC: the set of all negative instances whose costs are within a
constant factor k of the MAC:

k —IMAC(c,a) = {x € X|la(x) < k-MAC(c,a) and c(x) = 0}
* ACRE k-learnable



Adversarial Cost Functions

a(x) = Z ai|x; — xi’

l

* [inear cost function:

* uniform linear cost functions: a; = 1



Boolean Formulae

* In general, this set of classifiers 1s not ACRE learnable under most
interesting adversarial cost functions;

* Certain classes of Boolean formulae are ACRE learnable. For example,
(1) Monotone k-DNF problems: O (n*)

(2) Boolean Formulae only with A and one positive instance: n queries



[Linear Classifiers

* weight vector: w € R"™, threshold: T
e Positive instance: w+-X > T, gap(x) := |[w:x — T|

* sign witness to a feature f: a pair of instances, s™ and s~ such that
c(st)=1,c(s7) =0,and Vi # f,s;” = s;



[ _inear Classifiers — Continuous Features

Algorithm 1 FINDCONTINUOUSWEIGHTS(z 1, 27, €, 4)

(s*,s™, f) «— FINDWITNESS(x",x ")
wy «— 1.0 (s}r — s;)/|s? — 85|
Use (s™,s7) to find negative instance x with gap(x) < €/4
Tf— Ty —Wf
for each feature i # f do
Let i be the unit vector along the ¢th dimension
if c(x+1/6) = c(x —1/9) then
w; «— 0
else
w; < LINESEARCH(X, 1, €/4)
end if
end for

THEOREM b5.1. Let c be a continuous linear classifier with
vector of weights w, such that the magnitude of the ratio
between two non-zero weights is never less than §. Given
positive and negative instances X and x~, we can find each
weight within a factor of 1+ € using a polynomial number of
queries.



[ _inear Classifiers — Continuous Features

* The gap btween original sign witness

lw-st —T|+|w-s™ =T
w-sT —w-s”
w- (st —s7)

|s§ — s |

* Refine the gap using a binary search on the value of feature f to find a

gap(s™) +gap(s™)

negative instance X with gap less than €/4: O (log (1) + size(s™, s_))

€
» Total error: at most (1 + §)2< 1+e€,fore <8

* The number of queries per feature is logarithmic in 1/€ and the ratio
wr /w;, where log(wg /w;) is O(size(c))



[ _inear Classifiers — Continuous Features

* Total error: at most (1 + §)2< 1+e€,fore <8

* The number of queries: O (log (1) + 1og(gap(xa)))

€

Algorithm 2 FINDCONTINUOUSIMAC(z™*, 27, €)
0 «— min; a;
Run FINDCONTINUOUSWEIGHTS(z 1,27, €/4, §) THEOREM 5.2. Linear classifiers with continuous features
f < argmax;|w;|/a; are ACRE (1 + €)-learnable under linear cost functions.
t «— LINESEARCH(x?, f, €/4)

Let f be the unit vector along dimension f
return x* + tf




[Linear Classifiers — Boolean Features

Algorithm 3 FINDBOOLEANIMAC(x®,x7)

y —Xx
repeat
yprev —y
for all f € Cy do
toggle f in y
if ¢(y) =1 then
toggle f in y
end if
end for
for all f; € Cy; fo € Cy; f3 & Cy do
toggle f1, f2, and f3 iny
if ¢(y) =1 then
toggle f1, f2, and f3 iny
end if
end for
until yPev
return y

=Y




[Linear Classifiers — Boolean Features

THEOREM 5.3. In a linear classifier with Boolean features,
determining if a sign witness exists for a given feature is NP-
complete.

* The problem 1s NP-hard because it 1s a reduction from the subset sum

problem
THEOREM b5.4. Boolean linear classifiers are ACRE 2-learn-

able under uniform linear cost functions.

* Proof omitted (refer to the paper)

LEMMA 5.3.1. For two sequences of non-positive real num-

bers (s1,...,8m) and (t1,...,t,), if the following conditions
hold

2.5 Su (1)

n > 2m > 2 (2)

forall ,3 . ti —t; >u (3)

then there exists j,k,l such that l # k and s; —tx —t; <O.



Empirical Study: Spam Filtering

Table 1: Empirical Results in Spam Domain

med. | max | med. | max med. max

cost | cost | ratio | ratio | queries | queries

Dict NB 23 723 | 1.136 | 1.5 261k | 6,472k
Dict ME 10 49 | 1.167 | 1.5 119k 646k
Freq NB 34 761 | 1.105 | 1.5 25k 656k
Freq ME 12 72 | 1.108 | 1.5 10k 95k
Rand NB 31 759 | 1.120 | 1.5 23k 755k
Rand ME 12 64 | 1.158 | 1.5 9k 78k




Future Work

* Other forms of adversarial cost functions, types of classifiers, more
complex learning scenarios;

* Proving the learnability of less restricted Boolean formulas under
different adversarial cost functions;

* What conditions ACRE learning robust to noisy classifiers?
* When queries are expensive?



Discussion



Adversarial Classification

Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, Deepak Verma



Overview

* Formulate adversarial learning problems from game theory
perspectives

* Classifier strategy & Adversary strategy in one round game



Problem Definition

Symbol Meaning
X = (X1,X2,...,Xn) | Instance.
P(z Probability distribution of untainted data.
X i'" feature (attribute).

. g ¢ Domain of X and X, respectively.

< An instance and the ¢*"* attribute of that instance.

S, T Training and test set.
yc = C(x) The CLASSIFIER function.

za = A(z) The ADVERSARY transformation.
Vi Cost of measuring X;.
Uc(yc,y) Utility for CLASSIFIER of classifying as yc an instance of class .
Wi(zs, x}), W(z,z') | Cost of changing the i*" feature from z; to z; and instance z to z’, respectively.
Ua(yc,y) Utility accrued by ADVERSARY when CLASSIFIER classifies as yc an instance of class y.

Xe () Set of features measured by C.

LOc¢ (z) Log-odds or “contribution” of i*" attribute to naive Bayes classifier (ln %)
gap(x) gap(xz) > 0 <= NB classifies x as positive (LOc (z) — ggg;;;:ggg:;)

AU 4 ADVERSARY’s utility gain from successfully camouflaging a positive instance (Ua(-,+)—Ua(+,+)).
ALO; 4 “Gain” towards making x negative by changing i*" feature to z; (LOc(x;) — LOc(x})).
MCC(x) Nearest instance (costwise) to  which Naive Bayes classifies as negative.

Tli=a!] An instance identical to z except that " attribute is changed to z% € Xj.

Py (x) Probability distribution after ADVERSARY has modified the data.

Table 1: Summary of the notation used in this paper.




Problem Definition

Ue= Y P@y) [UeCA@)y) - Y V| ()

(z,y)eXY Xi€Xc(z)

Ua= ), Pla,y) UalC(A@)),y) — W(z, Alz))] (2)

(z,y)EXY

THEOREM 2.1. Consider a classification game with a bi-
nary cost model for ADVERSARY, i.e., given a pair of in-
stances x and ', ADVERSARY can either change x to x’ (in-
curring a unit cost) or it cannot (the cost is infinite). This
game always has a Nash equilibrium, which can be found in
time polynomial in the number of instances.



Cost-Sensitive Learning

S

* Naive Bayes: P(y|z) = % (zly) =

P(zily)

« conditional utility: U(yelz) = > P(ylz)Uc(ye,y)
yey

* Use greedy forward selection to select features

(3)



Adversary Strategy

ASsUMPTION 1. Complete Information: Both CLAS-
SIFIER and ADVERSARY know all the relevant parameters:
Vi,Uc, Wi, Ua and the naive Bayes model learned by CLAS-
SIFIER on S (including Xc, P(y), and P(xi|y) for each fea-
ture and class).

ASSUMPTION 2. ADVERSARY assumes that CLASSIFIER ¢S
unaware of its presence (i.e., ADVERSARY assumes that C(x)
is the naive Bayes model described in the previous section).



Adversary Strategy

P(e) _ ., P() P(zil+)
8 p(l) ~ B P() T ;Y log Bz (5)
LO¢(x) = lOgP(+|x) L0 (x;) = 1ng(xl|+)

P(=]x)
* Naive Bayes classifies an instance as positive if

P(xil-)

P(+|z) Uc( , =) —Uc(+,-)
P(-lz) ~ Uc(+,+) — Uo(-,+)

(6)

Uc(——)-Uc(+,—
LT(Ue) = log £ n =060 gap(x) = LOc(x) — LT(U)

« Adversary gain a utility of AU, = U,(—, +) — Us(+, +)



Adversary Strategy

* 6, 1if the feature X; is changed from x; to x;, and O otherwise
” 1

* gain in Adversary’s objective of making the instance negative: ALOi,x{ = LOp(x;) — LOe(x})

* integer (binary) linear program (NP-hard, can be reduced from 0-1 knapsack problem):

min{ Z Z Wz(xz,xi)émi} s.t.

X, eXc w;EXi

> > ALO; .64 > gap(x)

X, eXc xgeXi

57L,m2 € {07 1}7 Z 57,,.%; S 1

wgez\fi
* minimum cost camouflage (MCC) of x

* Adversary startegy:

T otherwise

Alz) = {Mcc<x> if NB(z) = +, W(z, MCC(z)) < AUA



Adversary Strategy

* A pseudo-linear time (O (W }; ||X;)) algorithm can be obtained by discretizing LO;

Algorithm 1 FINDMCC(i,w)

if w <0 then
return (0, {})

end it Algorithm 2 A(x)
if 1 =0 then W «— gap(x) (discretized).
retumn (oo;Undejined) (MinCost, MinList) «FINDMCC(n, W)
?\Iflgzgost “ oo if NB(z) =+ and MinCost < AUa then
MinList «— Undefined IREE = &
for z} € X; do for all (i,z;) € MinList do
if ALO; ./ >0 then newz; «— T,
(CurCost,CurList)—FINDMCC(i — 1,w — ALO; 1) end for
CurCost <+ CurCost + Wi(zi, x;). return newx
CurList «— CurList + (i,x}). else
if CurCost < MinCost then return
MinCost «— CurCost end if
MinList < CurList
end if
end if
end for

return (MinCost, MinList)




Adversary Strategy

* st pruning rule:

LEMMA 4.1. If

max
i,

then A(z) = x.

(ALOi,w; ) _ 9p(2)

Wi(.’IZi, CL';) AUA

* 2nd pruning rule: sort all the (i, x;) tuples in increasing order of W;(x;, x;) = 0. For identical values of
W;(x;, x;), use decreasing order of ALO, 1 as the secondary key and use the first entry in the list.



Classifier Strategy

* Assumptions:
AsSUMPTION 3. CLASSIFIER assumes that ADVERSARY
uses its optimal strategy to modify test instances (Algorithm 2).

ASSUMPTION 4. The training set S used for learning the
initial naive Bayes classifier is not tampered with by AD-
VERSARY (i.e., S is drawn from the real distribution of ad-
versarial and non-adversarial data,).

ASSUMPTION 5. VX; € X, W;(z;,x;) is a semi-metric,
i.e., it has the following properties:

1. Wi(zi,z;) > 0 and the equality holds iff z; = x;
2. Wi(zs,zi) < Wiz, z3) + Wi(zi, z7)

« (Implies W(x,x"") < W(x,x") + W(x',x""))



Classifier Strategy

 The probability of observing an instance x':

Pa(z'|+) = ) P(x|+)Pa(z'|z,+) (8)
Pa(z'l+)= > P(zl+) (9)
rEX 4 (x')

where X (x") = {x:x" = A(x)}

PA(w'+)—< 2. P(ﬂ?*)) +1(z)P(z'l+)  (10)
)

z€X), (=’

where X, (x") = {x:x" = AQON{x'}, I(x") = 1if NB(x") = —or W(x’,MCC(x’)) > AU,, and I(x") = 0 otherwise



Classifier Strategy

Algorithm 3 C(z')
P, — P(-)[I, P(Xi = zi|-)

P}, — P(+)Pa(z'|+)
U(+|z") < P, Uc(+,+) + P, Uc(-,+)
U(-lw’) == Pa:’ UC(-a +) oy Pa;’ UC(—7 -)
if U(+|z") > U(-|z') then

return +
else

return -
end if

 Solution to compute ), P(x|+): iterate through all possible positive examples and check if x' is their

XEX q(x")
minimum cost camouflage (need pruning!)



Classifier Strategy — pruning rules

LEMMA 5.1. Let x4 be any positive instance and let x' =
MCC(za). Then, Vi,

(za)i # x; = gap(z’) + LOc((xa)i) — LOc(z;) > 0

THEOREM b5.2. Let xa be a positive instance such that
' = MCC(za). Let D be the set of features that are
changed in Ta to obtain x’. Let £ be a non-trivial subset
of D, and let x'y be an instance that matches x' for all fea-
tures in € and x4 for all others, i.e., (x'4); = z; if X; € &,
(z'4): = (za)i otherwise. Then ' = MCC(xy).

COROLLARY b5.3. Let F'V be the set of feature-value pairs
that satisfy Lemma 5.1. Let GV C FV be such that (i,x;) €
GV ifzj,_,. € X4(z'). Then for every x4 € X)(z'), the set
of feature-value pairs where x4 and x' differ form a subset

of GV.

THEOREM 5.4. Let =’ be any instance and let GV be the
set defined in Corollary 5.3. Let G = {i|3z;(i,z;) € GV}
and let XF = {z; € X;|(3,x;) € GV}. Then

Y. Pafi—agl) < ) Pla|#) <

(i,z;)EGV zeX!, (z')
P(:I"Ez—m]|+)
I+ 2 —5em | !
L 2 TRE



Experiments — one round

(_’ _)

Ua
Uc

(+, +)
0

1

(+’ _)
0
—10/—100/—1000

(_’ +)
20

-1

0
1

Table 2: Utility matrices for Adversary and Classi-

fier used in the experiments.

Uc(+,-) 10 100 1000
Classifier FN FP | FN FP | FN FP
NB-PLAIN | 94 2 (124 1 |[165 1
NB-AW 481 2 | 481 1 |481 1
AC-AW 93 0 |123 0 |164 O
NB-AL 477 2 | 477 1 | 477 1
AC-AL 94 0 (124 O |[165 O
NB-SYN |408 2 |[413 1 |414 1
AC-SYN 164 1 (196 0 (229 O

Table 3: False positives and false negatives for
naive Bayes and the adversary-aware classifier on
the Ling-Spam dataset. The total number of posi-
tives in this dataset is 481, and the total number of
negatives is 2412.



Experiments — one round
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Figure 1: Utility results on the Ling-Spam dataset Figure 2: Utility results on the Email-Data set for
for different values of Uc(+,-). different values of Uc(+,-).



Experiments— repeated game

L AC(10) ———
AC(100) ——
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Figure 3: Utility of naive Bayes and the adversarial
classifier for a repeated game in the AW scenario
and Ling-Spam dataset. The number in parentheses

is Uc (+,-).



Future Work

* The general existence and form of Nash or other equilibria in
adversarial classification;

* Limitation: single-shot version of the adversarial classification game:
one move by each of the players;

* Experiments on spam testbed lack feature measurement costs



Discussion



