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Paper-1

Analyzing Graphs with Node 

Differential Privacy

Venue: TCC’13



Introduction

Many types of data can be represented as graphs

– Friendship in online social networks

– Financial transactions

– Email communications

– Health Network

– Relationships



Outline

• Graph Statistics

– Is important to understand connection patterns in social 

network graph

• E.g. Degree Distribution

– Degree = # Edges connected to a node

– Degree Distribution = Distribution of friends in a social 

network



Outline

• E.g. Subgraph Counts

– Triangle is a set of 3 nodes with 3 edges

– K-star consists of a central node connected to k other nodes

• E.g. Clustering Coefficient

– Probability that two friends of a user will also be friends

– = 3 * #triangles/ #2-stars  (40% in the above graph)



Challenges

• Privacy Issues:

– Subgraph counts (triangles/k-stars, cliques) can reveal sensitive 
friendship information

– Suppose V2 is an honest but curious adversary

– We need to obfuscate subgraph count to protect user privacy



Challenges



Who’d want to de-anonymize 

social network graph?
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Differential Privacy

• Differential privacy addresses adversarial attacks that queries datasets differing 

by only a small number of entries

• DP: Adding noise to query results

1. How to add noise 

2. How much noise to be added

• Obfuscating user data 

– individuals/third party



Differential Privacy on Graphs

• Edge DP: Algorithm should not reveal inclusion/removal of edge in a graph

– Graph: Represented as an adjacency matrix A (1: edge, 0: no edge)

– Use vi knows her neighbor list ai (i-th row of A). 

• Protects a single bit in a neighbor list a ɛ {0,1}n with privacy budget  ɛ.



Differential Privacy on Graphs

• Node DP: A node DP algorithm will have similar output distributions on any 

pair of graphs that differ in one node and edges adjacent to it

• Notion of node neighbors is used



Motivation

• Conflicting goals: Utility (accurate answers) Vs. Privacy

– Too much noise → reduce utility

– Too little noise → cannot suffice privacy guarantee

• Design node-differentially private algorithm that compute accurate 
graph characteristics on large family of realistic graphs

– Research Question: How accurately can an ɛ-differentially 
private algorithm release  f(G) 

» i.e. graph characteristics such as subgraph count, 
number of degrees, degree distribution?

Graph
QueriesCurator

Answers

Government, 

researchers 

or malicious 

adversary

(Statistic f) 

(Approximation to 

f(G)) 



Challenge for Node Privacy:

High Sensitivity
• Sensitivity: Change in query result caused by adding/removal of edge/node in graph

• Laplace mechanism for adding noise:

• Global Sensitivity  of a function f is:

Δf = max |f(G) – f(G’)| (maximum difference in function f for two neighboring datasets)

• Laplace is difficult: functions on graphs are 

→ highly sensitive to insertion/removal of well-connected node

– Example: Statistics

» f_(G) is the number of edges in G 

» f Δ(G) is the number of triangles in G

Magnitude of noise is proportional to function f which measures 
the maximum changes of adding or deleting changes on output

Node neighbors G, G’

δf_ (Sensitivity)= n

δfΔ (Sensitivity) = nC2

G’: Addition of a new node in G 
with n nodes and edge with 
each n

Too High!



“Projections” on Graphs of Small 

Degree

• Let G= family of all graphs, 

Gd= family of graphs of degree <= d

Notation: δf = Global sensitivity of f over G

δdf = Global sensitivity of f over Gd

Observation: δdf is low for many useful f
(function f has low/ bounded sensitivity, Lipschitz constant, on Gd)

Examples: 

δdf_ =  d (compared to δf_ = n and d <<n )

δdf Δ = dC2 (compared to δfΔ = nC2)

Goal: Privacy for all 

graphs!

Idea: Knowing the input lay for sub-class of graphs Gd, we can design more 

accurate differentially private algorithm by adding noise proportional to 

restrictive notion of sensitivity



General Technique for node-DP

1. Identify a set of “nice” graphs

– Example: Graphs of maximum degree at most d

– Should include graphs you care about

2. Design an algorithm that is differentially private on 

“nice” inputs

3.  “Extend” algorithm on all possible inputs



Method-1: Lipschitz Extension

• Idea: Given a function f with low Lipschitz constant (bounded sensitivity)

on “nice” graphs, if we can compute Lipschitz extension f’ defined on all G

• Then, use Laplace mechanism to release f’(G) with relatively small

additive noise

• Lower the stretch of extension, the lower the overall noise

• Accurate result if input falls near or “close” to class of “nice” graphs



Method-1: Lipschitz Extension

• Requires designing Lipschitz extension for each f

– Done using maximum flow and linear and complex programs

• There exists Lipschitz extension for most real valued functions

• Lipschitz extensions can be computed efficiently for functions:

» Subgraph counts

» Degree distribution

A function f’ is a Lipschitz extension of f from Gd to G if

• f’ agrees with f on Gd (same answers), and

• δf’ =δdf’



Lipschitz Extension of f_: Flow 

Graph

• For a graph G= (V,E), define flow graph of G:

• Vflow(G) is the value of maximum flow in the graph

Lemma: Vflow(G)/2 is the Lipschitz extension for f_

Proof: (1) Vflow(G) = 2f_(G) for all G ɛ Gd (flow function should have 

low global sensitivity on degree bounded graphs)

(2) δ Vflow = 2. δdf_ = 2d



Method-2: Reduction to Privacy 

over Gd

• Input: Algorithm B that is node-DP over Gd

• Output: Algorithm A that is node-DP over G has accuracy similar to B 

on nice graphs

• Project on Gd by doing

– Truncation T(G) for separation 

– Truncation outputs G with nodes of 

degree > d removed

- Answer queries on truncated graph not G



Contributions

Techniques used to obtain results:

• Node differentially private algorithms for releasing-

1. Number of edges

2. Counts of small subgraphs 

(e.g. triangles, k-triangles, k-stars)

1. Degree Distribution 

via Lipschitz extensions

via generic 

reduction



Key Takeaways

• Differential privacy requires that a change to one individual's input 

data not does not affect the algorithm's output distribution too much

• Accurate subgraph counts or number of edges for realistic graphs can 

be computed by node private algorithms

– Use Lipschitz extensions



Pros and Cons
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Pros Cons

Focuses on computing graph 

statistics using node privacy 

Cannot be used for releasing subset 

of nodes in input graph with 

differential privacy (e.g. vertex cover) 

Comprehensive theoretical analysis 

and proofs 

Limited empirical evaluation without 

validating on social network graph 

data

The accuracy guarantees are high for 

their proposed algorithms (truncation/ 

Lipschitz mechanism)

Assumes centralized model with a 

trusted curator that holds entire graph 

and sanitized versions of statistics

(not practically feasible)

Stronger privacy guarantee -



Discussion Questions

• What can’t be computed differentially privately?

• What are the two metrics of differential privacy in graphs?

• Why is node differential privacy a stronger guarantee?

• Why does node privacy exhibit high sensitivity in contrast to 

edge privacy?

Hint

Sensitivity→ largest change to the query results caused by adding/deleting
any record in the dataset, is the key parameter to determine the magnitude
of the added noise.



Paper-2

“Generating Synthetic Decentralized 

Social Graphs with Local Differential 

Privacy”

Venue: CCS’17

Authors: Zhan Qin1,2 , Ting Yu2 , Yin Yang3 , 

Issa Khalil2 , Xiaokui Xiao4 , Kui Ren



Motivation

Global Privacy Model Local Privacy Model

Collecting Statistical 

information: counts, 

histograms

Local Privacy: Graph information stored by users in their limited local view
Global Privacy:  Central collectors knows whole input graph



Decentralized Social Networks

• No single entity holds the whole graph

– Graph structures distributed among individuals

– Global privacy model not applicable

• Example:

– Phone contact list

– Friends with face-to-face interactions

• Analyzing decentralized social network (structure, properties) requires 
collecting data from individuals

– Privacy is a must

Centralized De- Centralized



Research Problem

• Could we generate a synthetic graph of a decentralized social 

network under local privacy definition and local privacy model?



Local Differential Privacy (LDP)

• Privacy guarantee for individual’s sensitive data in a local (distributed) 

setting

• Mathematically, mechanism M is ɛ-LDP if for any two inputs  v and v’:



Local Differential Privacy for 

Graph Data

• Node local differential privacy

– Hide the inclusion/removal of node

– Neighbor lists y and y’ could differ in all edges

• Edge local differential privacy

– Hide the inclusion/removal of an edge

– Neighbor list y and y’ differ in one edge

– Less perturbation to graph



Local Differential Privacy for 

Graph Data

• Node local differential privacy is stronger

– An overkill in some cases, too much noise

– Heavy price in utility of computed data even in global setting

• Edge local differential privacy is sufficient in many cases

– Users want to protect who exactly are their contacts rather than 

whether they have any contacts



Existing Work

• Binary attribute, unary attribute, single attribute

• Limited to categorical/numerical data statistics

– Which portion of users give a certain answer?

– Popular website among population

• Challenge: Here, we need graphs with statistics



Problem Statement

Input: each user has a neighbor list y

Output: synthetic social Graph G

The synthetic graph should capture underlying 

regional properties of decentralized social graph



Straw-man Approaches

• Approach-1: Focus on data collection

– Collect everything that user has (neighbor list) with privacy guarantee

• Approach-2: Focus on graph generation

– Collect parameters graph generating algorithm needs with privacy 

guarantee

– Parameters are derived from social network



Approach-1 (Randomized 

Neighbor List; RNL)

• Collecting everything that user has with privacy guarantee

– Randomized Neighbor List Approach (RNL)

• Shortcoming: Much denser graph, original real graph is sparse (few 1s)

– 200 times edge density increase when p=0.01, ɛ=4.6

– Loosing information of original graph



Approach-2 (Degree based 

Graph Generation; DGG)
• Collecting everything graph generating algorithm needs (like local information)

with privacy guarantee

• Existing synthetic social graph generation algorithms

– Erdos-Reny, BTER, Kroneker

– Some need local information e.g. node degrees

– Kroneker needs global information e.g. submatrix 

of adjacency matrix

• Perturbed node degree by ɛ-edge DP is sent to curator

– Computation of node degree gives  accurate degree dist. in synthetic graphs

Limitation: Each user only has a limited local graph view



Straw-man Approach 2

• Degree based Graph Generation Approach (DGG)

– Adapted BTER

– Perturbing node degree under ɛ-edge LDP

– Cluster nodes and generates edges based on node degrees

Downside: Capture node degrees and clustering coefficient but lose all other 

structure information

• Two nodes with same degree → different cluster

• Cannot capture node connections of graph, only 

degree



Key Observations

• Balance between noise introduction for DP and information lost for 

collecting information at coarser granularity

• RNL collects fine-grained information (neighbor list), but has the 

price of heavy perturbations to satisfy local DP

• DGG introduces small amount of noise, but only collects coarse-

grained statistics (node degree) to satisfy local DP



Methodology

• Partition all users into k groups , each user reports k degrees for each 

group respectively

• Choosing an appropriate user partitioning scheme is the key



Methodology

• Ideally, clustering of nodes → depends on data

• Circular Dependency: To collect data, need to know best value of k and 

partitioning schedule AND to know k, need to collect data

• Initial stage: ask nodes to report degree to random partitions → iterative!

Multi-phase design addresses:
1. Collects data from users in multiple rounds

2. Each round refines user partitioning scheme, collects 

data again with higher accuracy used in next round

3. Structurally close users will gradually group together



LDPGen: General Framework



LDPGen: Design Phase I

• Initial Grouping

• Users report degree vectors using initial 

partition groups         provided by curator

• Curator computes a new grouping 

scheme       based on collected degree 

vectors to each partition

• Approx. optimal number of partitions

Performing k-means algorithm to partition users into k1 groups



LDPGen: Design Phase II

• Refining grouping results

• Users report again new degree vectors using refined partition groups provided 

by curator

• Curator computes a new grouping scheme based on collected degree vectors



LDPGen: Design Phase III

• Graph Generation using refined grouping result

• Curator adapt graph generation algorithm (Inter-cluster and intra-cluster

edges are generated) on the user clusters

– Probability of generating an edge between two nodes is proportional

to their node clusters’ aggregated degrees to each other



Experimental Analysis

• Benchmark Datasets:

Facebook, Enron, Last.fm, Flixster

Utility Measurements:

1. Global statistics: graph structure statistics

– Modularity and Clustering Coefficient

2. Structural information: Community structures preservation

– Similarity of the communities obtained from synthetic graph and original 
graph

– Adjusted Mutual Information

3. Application: Social Recommendation use case

» A list of top-k items based on the two graphs using a same 
preference dataset

» Normalized discounted cumulative gain 



Graph Structure Statistics 

• Relative error (lower →better) of modularity and clustering coefficient

– DGG is based on BTER which is optimized for capturing clustering 

coefficient

Effect of ɛ on Modularity Effect of ɛ on Clustering Coefficient

Why LDPGen underperforms?

DGG → degree distribution

optimized for clustering coefficient



Community Preservation

• Adjusted Mutual Information (Number of similar communities in 

synthetic vs. original graph)

Effect of ɛ on AMI



Effectiveness of 

Recommendation System

• Normalized Discounted Cumulative Gain (NDCG)

Effect of ɛ on NDCG



Pros and Cons
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Pros Cons

Similar structure and distribution of 

nodes and edges

Neighbor information is lost in 

synthetic graphs

Comprehensive empirical evaluation No theoretical analysis on cost of 

LDP in graph generation

Early effort in privacy preservation 

graph analysis

Task specific approach; centrality 

measure, community detection

No trust issues, no central entity to 

share data with

Cannot capture edge weights, node 

attributes

Leverages users limited local view of 

graph information with LDP 

guarantee

May not work well for sparse 

communities social graph



Conclusion

• LDPGen: A multi-phase technique to incrementally cluster structurally 

similar users via refining parameters into different partitions.

– Add Laplacian noise when user reports information → guarantee 

local differential privacy

– Achieve good clustering → Synthetic graph generation

Future Scope: Stronger privacy guarantees (Node LDP) 

and more complicated mining tasks (frequent subgraph 

mining)



Discussion questions

1. What are the disadvantages of local differential privacy over global 

differential privacy? 

2. What is the communication overhead for LDPGen?

– O(1), O (n), O(n2)

– Overhead for RNL, DGG?

3. What are some ways to reduce the communication cost?

4. Why did the authors only include two rounds of iteration for grouping 

refinement during multiphase process?


