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Teasers

Github Copilot Leaks Secret Keys

https://mobile.twitter.com/pkell7/status/1411058236321681414
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The Secret Sharer: Evaluating and Testing 
Unintended Memorization in Neural Networks

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, Dawn Song



Problem Statements
• Do neural networks unintentionally memorize?

• How could we efficiently and effectively quantify the exposure of generative language models to 

unintended memorizations?

• How could we use our proposed exposure metric to develop strategies for practitioners to test their 

models against potential privacy threat?

• What causes unintended memorization and what prevents it?

Threat Model
• Curios or malicious users that can query models a large number of times in a black-box fashion.

• The users can see the output probabilities of the model

• We know exactly what we inserted to the training data (for testing purpose)

Overview
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Motivating Examples
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Penn Treebank Dataset
(Financial News)

My Social Security Number is 078-05-1120

Training

My Social Security Number is 
078-_________



Notations & Setup
Definition 1 The log-perplexity of a sequence x is

Measuring Unintended Memorizations
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Discussion
● Is this a good metric for unintended memorization? Are we done?

No!

● Consider: Mary had a little lamb (natural language) vs Correct horse battery staple (gibberish)

● A good language model should be less surprised by the former sentence even if it’s not in training

● The point is: Only by comparing to similarly-chosen alternate phrases can we accurately measure 

unintended memorization.



Notations & Setup
Notation s[r] denotes a random sequence (canary) generated based on format s using some 

randomness r over its space R

Definition 2 The rank of a canary s[r] is

Measuring Unintended Memorizations
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Discussion
● Rank can’t be efficiently computed - that would require sorting all possible canaries

● Instead, we ask: What information about an inserted canary is gained by access to the model?

○ Entropy reduction



The Exposure Metric
Definition 3 The guessing entropy is the number of guesses E(X) required in an optimal strategy to 

guess the value of a discrete random variable X

Measuring Unintended Memorizations
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Discussion
● Random guessing w/o the model: 

● Guessing with the model: sort canaries by perplexities and guess in order 

Definition 4 Given a canary s[r], a model with parameters θ, and the random space R, the exposure 

of s[r] is

Maximum entropy over R Querying model (conditioning) reduces entropy



Approximating The Exposure Metric

Measuring Unintended Memorizations
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Discussion
• From entropy reduction to probability

• We can now estimate exposure by 

sampling from a small subset :)

• What if the perplexity of s[r] is very 

small? We need a large subset to find 

even smaller s[t]! :(

• It would be nice if perplexity can be 

modeled as a probability distribution 

that can be easily parametrized



Approximating The Exposure Metric
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• Make simplifying assumption that the 

perplexity follows a probability distribution 

which can be easily integrated

• Skew-normal distribution seems to be a good 

choice: it passes the goodness of fit test

• Rewrite the overall probability as the 

summation of the probabilities of individual 

events and use continuous approximation

• We are happy :)



Testing Unintended Memorizations
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Dataset

My Social Security Number is ___-___-____
My Social Security Number is 233-66-8888
My Social Security Number is 457-55-5462
...

Training

What’s the exposure of canary 233-66-8888?
What’s the exposure of canary 457-55-5462?
...

https://www.wired.com/2010/05/lifelock-identity-theft/
https://www.wired.com/2010/05/lifelock-identity-theft/


Testing Unintended Memorizations
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Exposure vs Insertion on NMT Model Word-level language models with different hyperparameters
(Models on the orange line is preferred)



Testing Unintended Memorizations
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Exposure over Training Process

Overfitting? Overtraining?

CS 562 Presentation



Validating Exposure with Extraction: Shortest Path
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• Construct a suffix trie whose edge weight is the 

negative log probability of the character given 

the parent suffix

• Run Dijkstra’s algorithm on the tree to search for 

the s[r] that minimizes the log perplexity



Preventing Unintended Memorizations
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Recap: Differential Privacy



Preventing Unintended Memorizations
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Defense: DP-SGD

We can’t even extract data when the DP bounded 

given by DP-SGD is extremely loose or vacuous!



Takeaways
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Exposure vs DP

Upper-Bound Guaranteed by DP

Lower-Bound Estimation by Exposure

Here we are! :)
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Contributions
• Sound the alarm of unintended 

memorizations

• Quantifying memorization with exposure; 

extract memorized data

• DP prevents memorizations

 Limitations
• Generative sequential models only

(What is perplexity for an image?)

• Proposed attacks are mainly designed for 

testing purpose



Follow-up Works
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Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Erlingsson, U. and Oprea, A., 2020. 
Extracting training data from large language models. arXiv preprint arXiv:2012.07805.
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Deep Models Under the GAN: Information 
Leakage from Collaborative Deep Learning

Briland Hitaj, Giuseppe Ateniese, Fernando Perez-Cruz



Contributions
• Proposed an effective active inference attacks against collaborative learning pipelines with GANs

• More powerful compared with previous works in Model Inversion Attacks (MI)

• Attacks are effective on obfuscated parameters through differential privacy

Overview
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Threat Model: Collaborative Learning System
• The adversarial insider is an user trying to infer meaningful training data that doesn’t belong to 

him/her.

• The adversary can’t compromise the central parameter server.

• The adversary is adaptive and can build a GAN locally but follows the common learning objective.

Overview
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Method

CS 562 Presentation GRAINGER ENGINEERING

Key Steps
● Adversary trains his local generative adversarial network (unknown to the victim) to mimic class [a] 

from the victim
● Adversary generates samples from the GAN and labels them as class [c]



Results
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GAN Attack vs Other MI (Full Model Access)
• MI fails to reconstruct any meaningful pattern since it only works well on MLP 

but not complicated architecture like CNNs while GAN attack can reconstruct 

images with semantic meaning

• Analysis: In the GAN attack, the generative model is trained together with the 

discriminative model, while in MI, the discriminative model is only accessed 

at the end of the training phase

• GAN attacks work dynamically in an online fashion, while MI is static and is 

not adaptive



Results

CS 562 Presentation GRAINGER ENGINEERING

GAN Attack (Two-user MNIST)
• The user controls digits 0 - 4 and the adversary controls digits 5 - 9; use digit 5 to steal from the user

• Full model upload and download

• Full model download and 10% upload

• 10% upload and 10% download



Results

CS 562 Presentation GRAINGER ENGINEERING

GAN Attack (Two-user AT&T)
• The user controls 20 classes while the adversary controls the rest

• Full model upload and download

• Full model download and 10% upload

• 10% upload and 10% download

• Larger reconstruction noise due to low benign accuracy



Results
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GAN Attack (Multi-party AT&T)
• 41 users in total: one adversary and 40 benign

• Each benign users controls one class; the adversary has no data

• Results are good even with DP enabled



Results
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Passive vs Active GAN Attack (Presence of Fake Labels)



Results
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GAN Attack vs DP
• More visible reconstruction artifacts; but the visual information is still 

enough to leak privacy

• Only two scenarios where GAN attacks failed: DP constraints are too tight 

(ϵ is too small) and the model doesn’t learn at the first place

• As long as the training is good, we can reconstruct examples



• Probably not :) Rather, the authors' method bypassed (user-level) DP :(

• The reconstructed image X’ is technically not training sample X while DP only guarantees the 

existence of X can’t be inferred up to a (ε, δ) bound

• Past works mainly considers passive adversaries and information leakage through gradients

• The success of the generative-discriminative synergistic learning relies only on the accuracy of 

the discriminative model and not on its actual gradient values

Is DP Broken?

CS 562 Presentation GRAINGER ENGINEERING



Takeaways
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Contributions
• The first paper that utilizes GAN to perform privacy attacks under Federated Learning settings

• The proposed attack works in an adaptive fashion, eventually yielding realistic reconstructions 

• The proposed method can bypass DP because it does not require gradient information from 

victims, which is much superior than simple MI attacks

 Limitations
• The proposed method requires knowledge about the existence of label information that is not 

controlled by the adversary, which could be unrealistic under some circumstances

• No adaptive defense method was proposed



To Wrap Up 
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Privacy Preserving Machine Learning: A Bigger Picture

Xu, R., Baracaldo, N. and Joshi, J., 2021. Privacy-Preserving Machine Learning: Methods, Challenges and Directions. arXiv preprint arXiv:2108.04417.



Thank You!
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