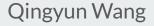
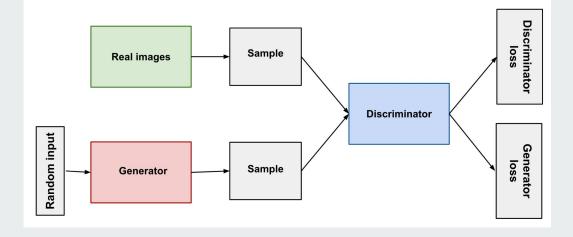
GAN and Cycle-GAN





Generative Adversarial Nets

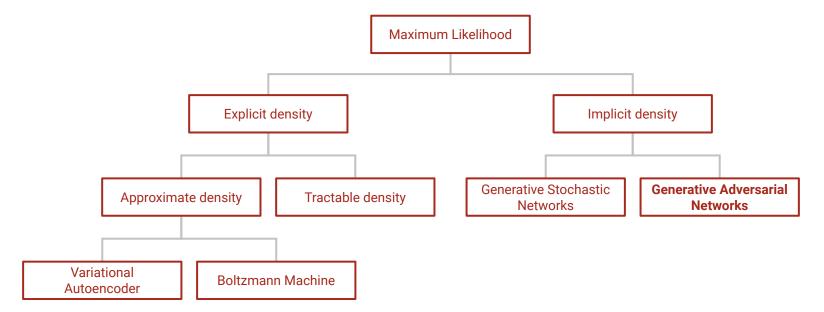
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio

Why do we need generative models?

- Test our ability to use high-dimensional, complicated probability distributions
- Simulate possible futures for planning or simulated RL
- Handle missing data especially in semi-supervised learning
- Work with multi-modal outputs

Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160.

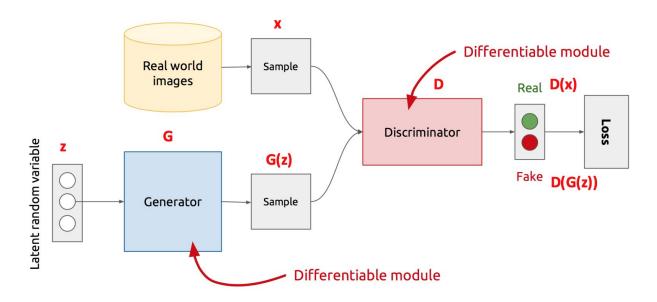
GAN compared with other generative models



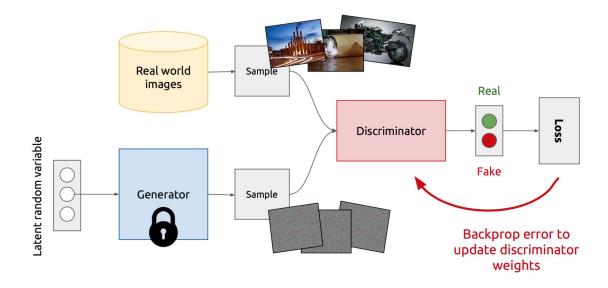
Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160.

Overview

- Use a latent code
- No Markov Chain
- No variational bound
- Play a minmax game

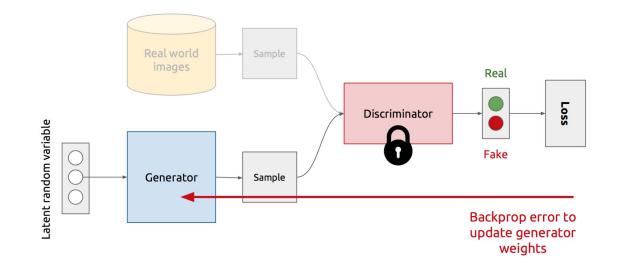


Training Discriminator



https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

Training Generator



https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-generative-models-and-adversarial-training-upc-2016

MinMax Game

- The Discriminator is trying to maximize its reward
- The Generator is trying to minimize Discriminator's reward

$$\begin{array}{c} \min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))] \\ \uparrow & \uparrow & \uparrow & \uparrow \\ \text{Discriminator} & \text{Discriminator's} & \text{Discriminator's} \\ \text{pushes up} & \text{ability to} & \text{ability to} \\ \text{Generator} & \text{pushes} & \text{being real} & \text{generator} \\ \text{pushes} & \text{down} & \text{fake} \end{array}$$

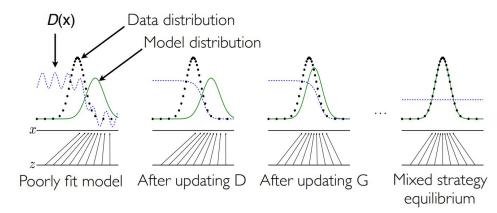
Discriminator Strategy

• Optimal strategy for any p_{model}(x) is always

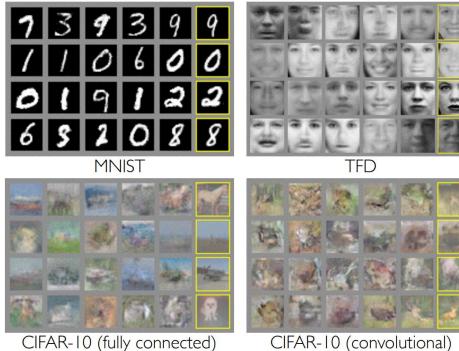
$$D(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{model}}(x)}$$

Theoretical properties

- Given infinite data, infinite model capacity, direct updating of generator's distribution
 - Unique global optimum
 - Optimum corresponds to data distribution $(p_{data} = p_g)$
 - Convergence to optimum guaranteed



Experiment Results



Advantages

- Sampling (or generation) is straightforward.
- Training doesn't involve Maximum Likelihood estimation.
- Robust to overfitting since Generator never sees the training data.
- Empirically, GANs are good at capturing the modes of the distribution.

Disadvantages

Target

- Probability distribution is implicit
 - Not straightforward to compute P(X)
- Training is Hard
 - Non-Convergence
 - Optimization algorithms often approach a saddle point or local minimum rather than a global minimum
 - Game solving algorithms may not approach an equilibrium at all
 - Mode-Collapse
 - Generator learns to map several different input z values to the same output point
 - Generator makes multiple images that contain the same color or texture themes, or multiple images containing different views of the same dog

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

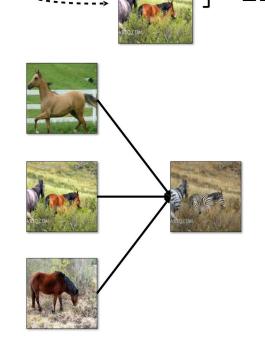
Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros

https://junyanz.github.io/CycleGAN/

eriginal I have no time French augmented I do not have time English English

Motivation

- Paired training data are not available for all tasks
- GAN suffer from mode collapse
- Introduce a two-step transformation of source domain image
 - Inspired by back-translation, e.g. a sentence from English to French, and then translate it back from French to English
 - Cycle-consistent
 - Mapping from style 1 to style 2 and back again should give you almost the original image

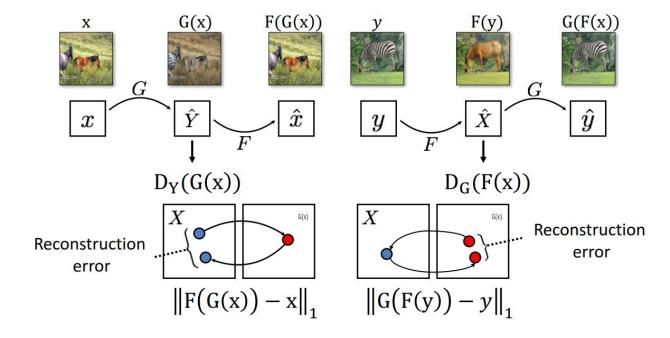


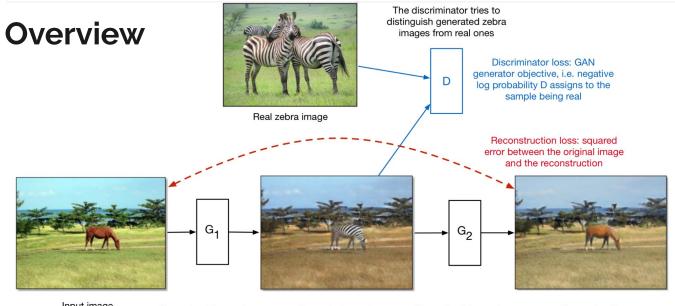
G(x)

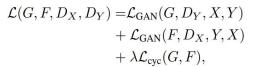
Х

Generator

Cycle Consistency Loss







Input image (real horse image)

Generator 1 learns to map from horse images to zebra images while preserving the structure Generator 2 learns to map from zebra images to horse images while preserving the structure Reconstruction

Experiment Results

	$\mathbf{Map} \to \mathbf{Photo}$	$\mathbf{Photo} \to \mathbf{Map}$
Loss	% Turkers labeled real	% Turkers labeled real
CoGAN [30]	$0.6\%\pm0.5\%$	$0.9\%\pm0.5\%$
BiGAN/ALI [8, 6]	$2.1\%\pm1.0\%$	$1.9\%\pm0.9\%$
SimGAN [45]	$0.7\%\pm0.5\%$	$2.6\%\pm1.1\%$
Feature loss + GAN	$1.2\%\pm0.6\%$	$0.3\%\pm0.2\%$
CycleGAN (ours)	$\textbf{26.8\%} \pm \textbf{2.8\%}$	$23.2\% \pm 3.4\%$

AMT 'real vs fake' test on maps ↔ aerial

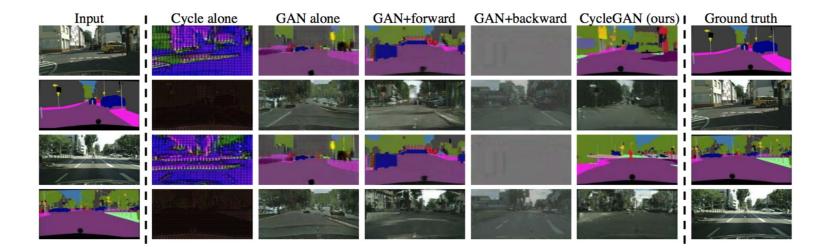
Loss	Per-pixel acc.	Per-class acc.	Class IOU
CoGAN [30]	0.40	0.10	0.06
BiGAN/ALI [8, 6]	0.19	0.06	0.02
SimGAN [45]	0.20	0.10	0.04
Feature loss + GAN	0.06	0.04	0.01
CycleGAN (ours)	0.52	0.17	0.11
ECN coores	on citycoon	ac labele v	abotos

FCN scores on cityscapes labels \rightarrow photos

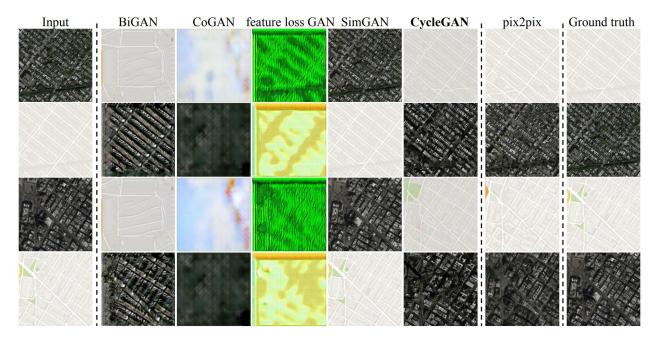
0.15		
0.45	0.11	0.08
0.41	0.13	0.07
0.47	0.11	0.07
0.50	0.10	0.06
0.58	0.22	0.16
	0.41 0.47 0.50 0.58	0.41 0.13 0.47 0.11 0.50 0.10

Input <i>x</i>	Output $G(x)$	Reconstruction $F(G(x))$
Ph		

Cityscapes

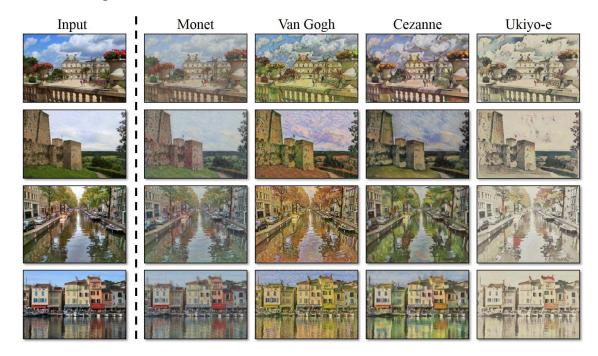


Google Maps

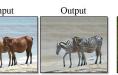


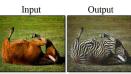
Monet Paintings \rightarrow Photos

Collection Style Transfer



Object Transfiguration





 $zebra \rightarrow horse$

apple \rightarrow orange

Season transfer

winter Yosemite \rightarrow summer Yosemite

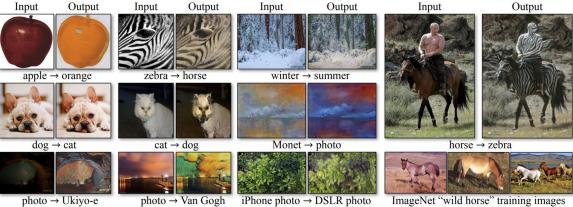
summer Yosemite \rightarrow winter Yosemite

Photo Enhancement



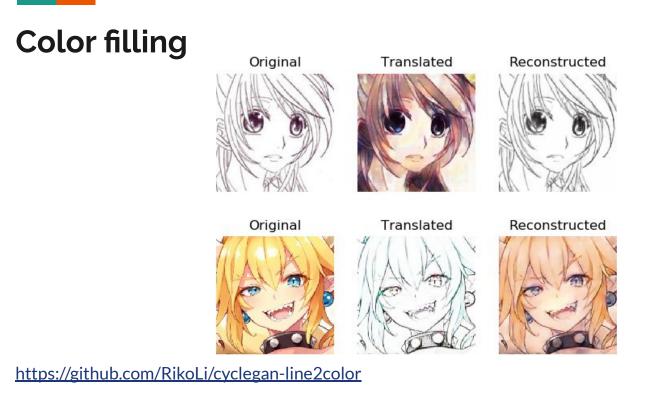
Limitations

- Works well for translation tasks involving color and texture changes
- Failed for tasks that require substantial geometric changes to the image, such as cat-to-dog translations because of the generator architecture which is trained to perform appearance changes in the image



Potential Improvement

- CycleGAN lacks the straightforward description of the target domain
 - Adding additional regularization term to enforce similar image content in the source space to also be similar in the target space (<u>Harmonic GAN</u>)
 - Translating both an image and the corresponding set of instance attributes while maintaining the permutation invariance property of the instances (InstaGAN)
 - Disentangling structured information (Cross-domain disentanglement networks)
 - Introducing a semantic content loss to cope with substantial style variation and an edge-promoting adversarial loss for preserving clear edges (<u>CartoonGAN</u>)



Converting Monet into Thomas Kinkade

https://web.eecs.umich.edu/~fouhey//fun/monet/index.html

Face to Ramen

Thank you!