# Semi-Supervised Classification with Graph Convolutional Network

Thomas N. Kipf, Max Welling ICLR 2017

#### Introduction

- Graphs contains rich set of information in both nodes and edges
- Example tasks is node classification
- Apply Convolution Filter to graph

$$H^{(l+1)} = f(H^l, A)$$





# Approximating Spectral Convolution

Laplacian and Normalization

$$L = D - A$$

$$L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$

Spectral Convolution

$$g_{\theta} \bigstar x = U g_{\theta} U^T x$$
 Eigenvectors of Laplacian

First Order Approximation

$$g_{\theta}x \approx \theta_{0}x + \theta_{1}(I - L_{sym})x \approx \theta(I + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})x$$

# Convolutional Layer

Further Approximation

$$g_{\theta} \star x \approx \theta (I + D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) x$$
  
 $\tilde{A} = A + I \text{ and } \tilde{D}_{ii} = \sum_{j} \tilde{A}_{ij}$ 

Matrix Representation

Matrix Representation

Feature Maps
$$(NXC)$$
 $(NXF)$ 
 $Z = \sigma (\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} X \Theta)$ 

Non-linear Activation

Filter/Kernal (CXF)

Input signal

# Spatial Interpretation



# Example: Two Layer GCN Model

Model

$$\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$$
 Precomputed

$$Z = f(X, A) = softmax(\hat{A} ReLU(\hat{A} X W^{0}) W^{1})$$

Sparse Dense Matrix Multiplication: *O(E)* 

Loss Function

$$loss = -\sum_{l \in y} \sum_{f} Y_{lf} log(Z_{lf})$$





# Evaluation

| Method           | Citeseer         | Cora       | Pubmed            | NELL              |
|------------------|------------------|------------|-------------------|-------------------|
| ManiReg [3]      | 60.1             | 59.5       | 70.7              | 21.8              |
| SemiEmb [28]     | 59.6             | 59.0       | 71.1              | 26.7              |
| LP [32]          | 45.3             | 68.0       | 63.0              | 26.5              |
| DeepWalk [22]    | 43.2             | 67.2       | 65.3              | 58.1              |
| ICA [18]         | 69.1             | 75.1       | 73.9              | 23.1              |
| Planetoid* [29]  | 64.7 (26s)       | 75.7 (13s) | 77.2 (25s)        | 61.9 (185s)       |
| GCN (this paper) | <b>70.3</b> (7s) | 81.5 (4s)  | <b>79.0</b> (38s) | <b>66.0</b> (48s) |

|                    | Description                      | Propagation model                                                  | Citeseer | Cora | Pubmed |
|--------------------|----------------------------------|--------------------------------------------------------------------|----------|------|--------|
| K nodes away       | Chebyshev filter (Eq. 5) $K = 3$ | $\sum_{K}^{K} T(\tilde{I}) VO$                                     | 69.8     | 79.5 | 74.4   |
| K Houes away       | Chebysnev filter (Eq. 5) $K = 2$ | $\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$                         | 69.6     | 81.2 | 73.8   |
|                    | 1st-order model (Eq. 6)          | $X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$           | 68.3     | 80.0 | 77.5   |
|                    | Single parameter (Eq. 7)         | $(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$                 | 69.3     | 79.2 | 77.4   |
| Vanishing Gradient | Renormalization trick (Eq. 8)    | $\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$ | 70.3     | 81.5 | 79.0   |
| No self loop       | 1st-order term only              | $D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$                         | 68.7     | 80.5 | 77.8   |
|                    | Multi-layer perceptron           | $X\Theta$                                                          | 46.5     | 55.1 | 71.4   |

#### Limitation and Discussion

- Spatial Convolution with 1<sup>st</sup> order approximation in current framework does not support edge features and directed graphs
- Memory and Computation cost can grow
  - Sparse Dense matrix multiplication relies on sparsely connected graphs
  - Memory grows linearly with size of dataset
- GCN can be viewed as an "average" of neighboring nodes, propagating thru
  the graph via message passing





# Summary

- Fast Approximation of Spectral Convolutions on Graph to provide local spectral filter that is fast to compute
- Stack multiple layers to build a neural network model
- Allows for Semi-Supervised Node Classification via Loss function and differentiable functions



# Robust Graph Convolutional Networks Against Adversarial Attacks

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu KDD 2019

#### Introduction

- Graphic Convolutional Network (GCN) are vulnerable to adversarial attacks
  - Changing Node Links or Attributes
- How to design a Robust GCN?
  - Limit the effect of adversarial inputs
- Adopt Gaussian Distribution as hidden representation
  - Variance Matrix for attention-mechanism





## Gaussian-based Graph Convolution Layer

• Latent Representation is a gaussian distribution

$$h_i^l = N(u_i^l, diag(\sigma_i^l))$$

Weighted sum of gaussian vector is also gaussian

$$h_{ne(i)}^{l} \sim N\left(\sum_{j \in ne(i)} \frac{1}{\sqrt{\widetilde{D}_{ii}\widetilde{D}_{jj}}} u_{j}^{l}, diag\left(\sum_{j \in ne(i)} \frac{1}{\widetilde{D}_{ii}\widetilde{D}_{jj}} \sigma_{j}^{l}\right)\right)$$

• Apply "Attention" based on variance, larger variance = more uncertainty

Attention Weights 
$$\alpha_j^l = \exp(-\gamma \sigma_j^l) \qquad h_{ne(i)}^l \sim N(\sum_{j \in ne(i)} \frac{u_j^l \odot \alpha_j^l}{\sqrt{\widetilde{D}_{li} \widetilde{D}_{jj}}}, diag\left(\sum_{j \in ne(i)} \frac{\sigma_j^l \odot \alpha_j^l \odot \alpha_j^l}{\widetilde{D}_{li} \widetilde{D}_{jj}}\right))$$

### Gaussian-based Graph Convolution Layer

Propagate Mean and Variance Directly by applying weight and non-linearity

$$H^{l+1} = \rho \left( \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} H^{l} W^{l} \right)$$

$$M^{l+1} = \rho \left( \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} (M^{l} \odot \mathcal{A}^{l}) W_{\mu}^{l} \right)$$

$$\Sigma^{l+1} = \rho \left( \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} (\Sigma^{l} \odot \mathcal{A}^{l} \odot \mathcal{A}^{l}) W_{\sigma}^{l} \right)$$

 Sample From distribution to obtain final layer output with regularize KL divergence for 1st hidden layer

$$\mathcal{L} = \sum_{i=1}^{N} KL \left( N\left(u_i^1, diag(\sigma_i^1)\right) \mid\mid N(0, I) \right)$$

#### Clean Dataset Results

**Graph Convolutional Network** 

Attention based GCN

This paper

|      | Cora           | Citeseer       | Pubmed         |
|------|----------------|----------------|----------------|
| GCN  | $81.5 \pm 0.5$ | $70.9 \pm 0.5$ | $79.0 \pm 0.3$ |
| GAT  | $83.0 \pm 0.7$ | $72.5 \pm 0.7$ | $79.0 \pm 0.3$ |
| RGCN | $82.8 \pm 0.6$ | $71.2 \pm 0.5$ | $79.1 \pm 0.3$ |

• Similar Effectiveness compared to other approaches under adversarial-free setting

# Against Non-Targeted Attack

Poisoning attack on model by randomly adding edges to training graph



## Against Targeted Attacks

- Target High Value Nodes (>10 edges)
  - Evasion Attack



Poison Attack



# Discussion: Why does Robustness Improve?



- Sampling from Distribution depends on the variance
- "Absorbs" the effect of adversarial input
- High variance stops the propagation of attacked nodes

## Summary

- Represent Latent vectors using Gaussian Distribution and final output is sampled by distribution
- Compute and Propagate Mean and Variance matrix instead of hidden representations
- Improve Robustness of GCN by reducing impact of adversarial attacks using sampling and variance attention weights