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Introduction

• Graphs contains rich set of information in 
both nodes and edges

• Example tasks is node classification

• Apply Convolution Filter to graph 

𝐻 𝑙+1 = 𝑓 𝐻𝑙 , 𝐴



Approximating Spectral Convolution 
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Eigenvectors of Laplacian 

• Laplacian and Normalization

• Spectral Convolution

• First Order Approximation



Convolutional Layer
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Feature Maps 
(N X F )

Input signal 
(N X C)

Filter/Kernal
(C X F)

Non-linear Activation

• Further Approximation 

• Matrix Representation



Spatial Interpretation
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Example: Two Layer GCN Model

𝑍 = 𝑓 𝑋, 𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥( መ𝐴 𝑅𝑒𝐿𝑈 መ𝐴 𝑋 𝑊0 𝑊1)
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𝑓

𝑌𝑙𝑓 𝑙𝑜𝑔(𝑍𝑙𝑓)

Sparse Dense Matrix 
Multiplication: O(E)

Precomputed

• Model

• Loss Function



Evaluation

K nodes away

Vanishing Gradient

No self loop



Limitation and Discussion
• Spatial Convolution with 1st order approximation in current framework does 

not support edge features and directed graphs

• Memory and Computation cost can grow
• Sparse Dense matrix multiplication relies on sparsely connected graphs
• Memory grows linearly with size of dataset

• GCN can be viewed as an “average” of neighboring nodes, propagating thru 
the graph via message passing 



Summary
• Fast Approximation of Spectral Convolutions on Graph to provide local 

spectral filter that is fast to compute 

• Stack multiple layers to build a neural network model

• Allows for Semi-Supervised Node Classification via Loss function and 
differentiable functions 
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• Graphic Convolutional Network (GCN) are vulnerable 
to adversarial  attacks 
• Changing Node Links or Attributes

• How to design a Robust GCN?
• Limit the effect of adversarial inputs 

• Adopt Gaussian Distribution as hidden 
representation
• Variance Matrix for attention-mechanism 

Introduction

Adversarial Input

Incorrect 
Classification

Correct 
Classification



Gaussian-based Graph Convolution Layer
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• Latent Representation is a gaussian distribution

• Weighted sum of gaussian vector is also gaussian

• Apply “Attention” based on variance, larger variance = more uncertainty
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Attention Weights



Gaussian-based Graph Convolution Layer
• Propagate Mean and Variance Directly by applying weight and non-linearity
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• Sample From distribution to obtain final layer output with regularize KL 
divergence for 1st hidden layer
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Clean Dataset Results

Graph Convolutional Network

Attention based GCN

This paper

• Similar Effectiveness compared to other approaches under adversarial-free 
setting



Against Non-Targeted Attack

• Poisoning attack on model by randomly adding edges to training graph



Against Targeted Attacks
• Target High Value Nodes (>10 edges) 

• Evasion Attack • Poison Attack



Discussion: Why does Robustness Improve?

• Sampling from Distribution depends on 
the variance

• “Absorbs” the effect of adversarial input

• High variance stops the propagation of 
attacked nodes

Adversarial Node 
or Connection

Node being 
attacked

Attention Value 
is low due to 

High Variance

Clean Node



Summary

• Represent Latent vectors using Gaussian Distribution and final output is 
sampled by distribution 

• Compute and Propagate Mean and Variance matrix instead of hidden 
representations

• Improve Robustness of GCN by reducing impact of adversarial attacks using 
sampling and variance attention weights


