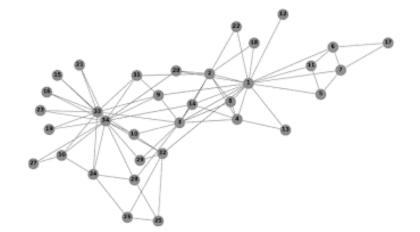
Semi-Supervised Classification with Graph Convolutional Network

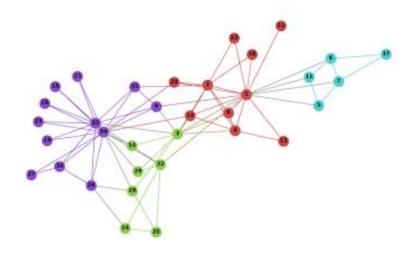
Thomas N. Kipf, Max Welling ICLR 2017

Introduction

- Graphs contains rich set of information in both nodes and edges
- Example tasks is node classification
- Apply Convolution Filter to graph

$$H^{(l+1)} = f(H^l, A)$$





Approximating Spectral Convolution

Laplacian and Normalization

$$L = D - A$$

$$L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I - D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$

Spectral Convolution

$$g_{\theta} \bigstar x = U g_{\theta} U^T x$$
 Eigenvectors of Laplacian

First Order Approximation

$$g_{\theta}x \approx \theta_{0}x + \theta_{1}(I - L_{sym})x \approx \theta(I + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})x$$

Convolutional Layer

Further Approximation

$$g_{\theta} \star x \approx \theta (I + D^{-\frac{1}{2}} A D^{-\frac{1}{2}}) x$$

 $\tilde{A} = A + I \text{ and } \tilde{D}_{ii} = \sum_{j} \tilde{A}_{ij}$

Matrix Representation

Matrix Representation

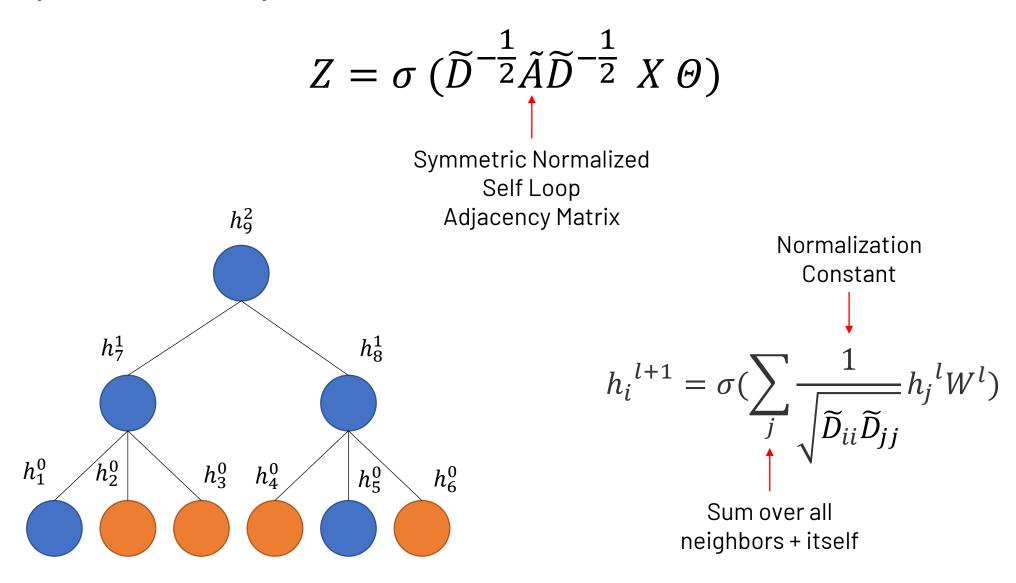
Feature Maps
$$(NXC)$$
 (NXF)
 $Z = \sigma (\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} X \Theta)$

Non-linear Activation

Filter/Kernal (CXF)

Input signal

Spatial Interpretation



Example: Two Layer GCN Model

Model

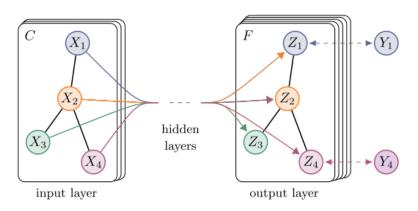
$$\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$$
 Precomputed

$$Z = f(X, A) = softmax(\hat{A} ReLU(\hat{A} X W^{0}) W^{1})$$

Sparse Dense Matrix Multiplication: *O(E)*

Loss Function

$$loss = -\sum_{l \in y} \sum_{f} Y_{lf} log(Z_{lf})$$



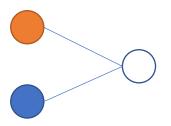
Evaluation

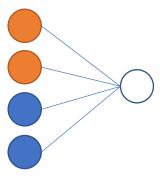
Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	64.7 (26s)	75.7 (13s)	77.2 (25s)	61.9 (185s)
GCN (this paper)	70.3 (7s)	81.5 (4s)	79.0 (38s)	66.0 (48s)

	Description	Propagation model	Citeseer	Cora	Pubmed
K nodes away	Chebyshev filter (Eq. 5) $K = 3$	$\sum_{K}^{K} T(\tilde{I}) VO$	69.8	79.5	74.4
K Houes away	Chebysnev filter (Eq. 5) $K = 2$	$\sum_{k=0}^{K} T_k(\tilde{L}) X \Theta_k$	69.6	81.2	73.8
	1st-order model (Eq. 6)	$X\Theta_0 + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta_1$	68.3	80.0	77.5
	Single parameter (Eq. 7)	$(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}})X\Theta$	69.3	79.2	77.4
Vanishing Gradient	Renormalization trick (Eq. 8)	$\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}X\Theta$	70.3	81.5	79.0
No self loop	1st-order term only	$D^{-\frac{1}{2}}AD^{-\frac{1}{2}}X\Theta$	68.7	80.5	77.8
	Multi-layer perceptron	$X\Theta$	46.5	55.1	71.4

Limitation and Discussion

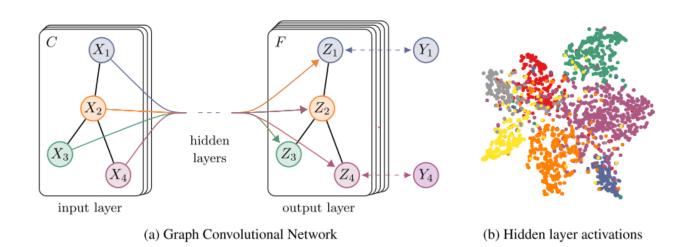
- Spatial Convolution with 1st order approximation in current framework does not support edge features and directed graphs
- Memory and Computation cost can grow
 - Sparse Dense matrix multiplication relies on sparsely connected graphs
 - Memory grows linearly with size of dataset
- GCN can be viewed as an "average" of neighboring nodes, propagating thru
 the graph via message passing





Summary

- Fast Approximation of Spectral Convolutions on Graph to provide local spectral filter that is fast to compute
- Stack multiple layers to build a neural network model
- Allows for Semi-Supervised Node Classification via Loss function and differentiable functions

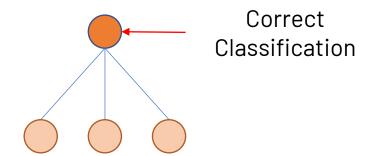


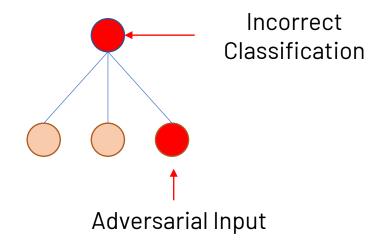
Robust Graph Convolutional Networks Against Adversarial Attacks

Dingyuan Zhu, Ziwei Zhang, Peng Cui, Wenwu Zhu KDD 2019

Introduction

- Graphic Convolutional Network (GCN) are vulnerable to adversarial attacks
 - Changing Node Links or Attributes
- How to design a Robust GCN?
 - Limit the effect of adversarial inputs
- Adopt Gaussian Distribution as hidden representation
 - Variance Matrix for attention-mechanism





Gaussian-based Graph Convolution Layer

• Latent Representation is a gaussian distribution

$$h_i^l = N(u_i^l, diag(\sigma_i^l))$$

Weighted sum of gaussian vector is also gaussian

$$h_{ne(i)}^{l} \sim N\left(\sum_{j \in ne(i)} \frac{1}{\sqrt{\widetilde{D}_{ii}\widetilde{D}_{jj}}} u_{j}^{l}, diag\left(\sum_{j \in ne(i)} \frac{1}{\widetilde{D}_{ii}\widetilde{D}_{jj}} \sigma_{j}^{l}\right)\right)$$

• Apply "Attention" based on variance, larger variance = more uncertainty

Attention Weights
$$\alpha_j^l = \exp(-\gamma \sigma_j^l) \qquad h_{ne(i)}^l \sim N(\sum_{j \in ne(i)} \frac{u_j^l \odot \alpha_j^l}{\sqrt{\widetilde{D}_{li} \widetilde{D}_{jj}}}, diag\left(\sum_{j \in ne(i)} \frac{\sigma_j^l \odot \alpha_j^l \odot \alpha_j^l}{\widetilde{D}_{li} \widetilde{D}_{jj}}\right))$$

Gaussian-based Graph Convolution Layer

Propagate Mean and Variance Directly by applying weight and non-linearity

$$H^{l+1} = \rho \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} H^{l} W^{l} \right)$$

$$M^{l+1} = \rho \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} (M^{l} \odot \mathcal{A}^{l}) W_{\mu}^{l} \right)$$

$$\Sigma^{l+1} = \rho \left(\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}^{-\frac{1}{2}} (\Sigma^{l} \odot \mathcal{A}^{l} \odot \mathcal{A}^{l}) W_{\sigma}^{l} \right)$$

 Sample From distribution to obtain final layer output with regularize KL divergence for 1st hidden layer

$$\mathcal{L} = \sum_{i=1}^{N} KL \left(N\left(u_i^1, diag(\sigma_i^1)\right) \mid\mid N(0, I) \right)$$

Clean Dataset Results

Graph Convolutional Network

Attention based GCN

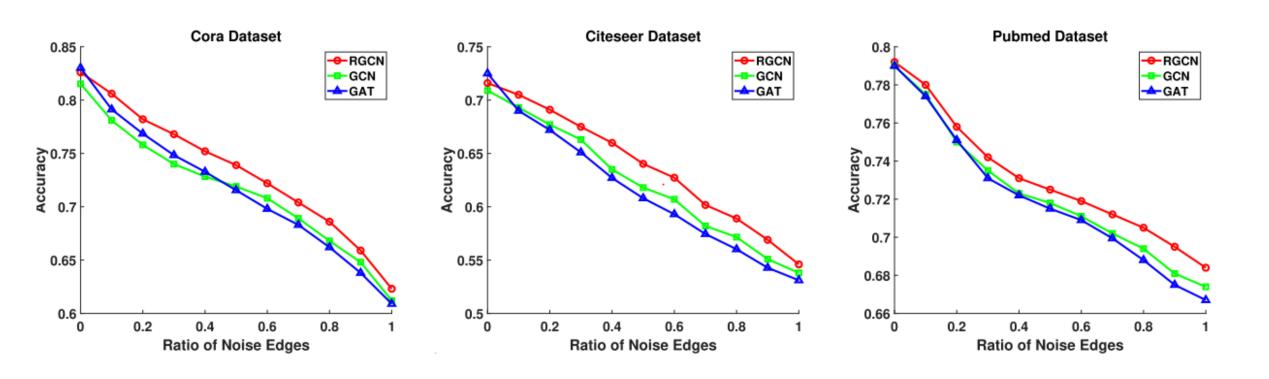
This paper

	Cora	Citeseer	Pubmed
GCN	81.5 ± 0.5	70.9 ± 0.5	79.0 ± 0.3
GAT	83.0 ± 0.7	72.5 ± 0.7	79.0 ± 0.3
RGCN	82.8 ± 0.6	71.2 ± 0.5	79.1 ± 0.3

• Similar Effectiveness compared to other approaches under adversarial-free setting

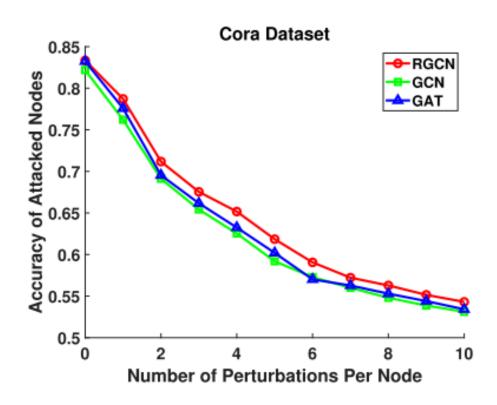
Against Non-Targeted Attack

Poisoning attack on model by randomly adding edges to training graph

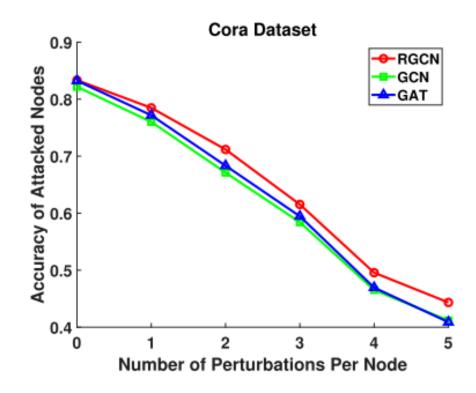


Against Targeted Attacks

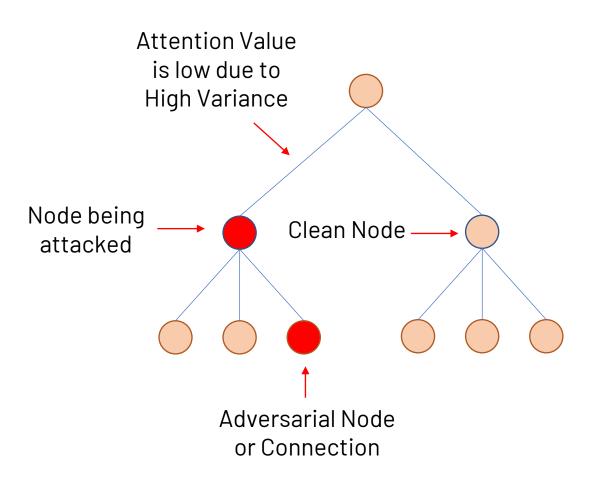
- Target High Value Nodes (>10 edges)
 - Evasion Attack



Poison Attack



Discussion: Why does Robustness Improve?



- Sampling from Distribution depends on the variance
- "Absorbs" the effect of adversarial input
- High variance stops the propagation of attacked nodes

Summary

- Represent Latent vectors using Gaussian Distribution and final output is sampled by distribution
- Compute and Propagate Mean and Variance matrix instead of hidden representations
- Improve Robustness of GCN by reducing impact of adversarial attacks using sampling and variance attention weights