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Introduction

 Graphs containsrich set of information in
both nodes and edges

« Example tasks is node classification

* Apply Convolution Filter to graph

H(l+1) — f(Hl,A)



Approximating Spectral Convolution

Laplacian and Normalization
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Eigenvectors of Laplacian

First Order Approximation
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Convolutional Layer

* Further Approximation
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goxx = O(I+D 2AD 2)x

A=A+I and Eii = Z}Al]

Input signal
« Matrix Representation (NXC)
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Spatial Interpretation
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Example: Two Layer GCN Model
* Model

Precomputed

Sparse Dense Matrix
Multiplication: O(E)
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(a) Graph Convolutional Network (b) Hidden layer activations



Evaluation

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7
LP [32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 hR.1
ICA [18] 69.1 75.1 73.9 23.1

Planetoid® [29] 64.7 (26s)  75.7(13s) T77.2(25s) 61.9 (185s)
GCN (this paper) 70.3 (7s) 81.5 (4s) 79.0 (38s) 66.0 (48s)

Description Propagation model Citeseer Cora Pubmed

. K=3 69.8  79.5 74.4

Knodesaway ——> Chebyshev filter (Eq.5) - _ SR Tw(L)X O 69.6 819 733
1*-order model (Eq. 6) XOy+ D~ 3AD- %X(%l 68.3  80.0 77.5

Single parameter (Eq. 7) (In + D_:qu_ 1) X0 69.3  79.2 77.4

Vanishing Gradient ——— Renormalization trick (Eq. 8) D-:AD"3X6© 70.3 81.5 79.0
Noselfloop —— 1*-order term only D 3AD :X© 68.7  80.5 77.8

Multi-layer perceptron X0 46.5  55.1 71.4



Limitation and Discussion

« Spatial Convolution with 15t order approximation in current framework does
not support edge features and directed graphs

« Memory and Computation cost can grow
« Sparse Dense matrix multiplication relies on sparsely connected graphs
 Memory grows linearly with size of dataset

« GCN can be viewed as an“average” of neighboring nodes, propagating thru
the graph via message passing

. ©



Summary

Fast Approximation of Spectral Convolutions on Graph to provide local
spectral filter that is fast to compute

Stack multiple layers to build a neural network model

Allows for Semi-Supervised Node Classification via Loss function and
differentiable functions
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(a) Graph Convolutional Network (b) Hidden layer activations
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Introduction

 Graphic Convolutional Network (GCN) are vulnerable Correct
. Classification
to adversarial attacks

 Changing Node Links or Attributes

« How to design a Robust GCN?

* Limit the effect of adversarial inputs

Incorrect

: L : Classificati
« Adopt Gaussian Distribution as hidden e

representation
 Variance Matrix for attention-mechanism

T

Adversarial Input



Gaussian-based Graph Convolution Layer
« Latent Representation is a gaussian distribution
= N(ul, diag(ail))

 Weighted sum of gaussian vector is also gaussian
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* Apply “Attention” based on variance, larger variance = more uncertainty
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Gaussian-based Graph Convolution Layer

 Propagate Mean and Variance Directly by applying weight and non-linearity

~_1__1 l
% M1 = p(D7ZADZ(M'O AHW,)

1
Hl+1 =p (D EA lel)
1 1
Zl+1 — ,0( EA E(ZZQ dql @c/ql)Wal)

 Sample From distribution to obtain final layer output with reqgularize KL
divergence for 15t hidden layer

£=3N, KL (N (ul,diag(a?)) IN(O,D)



Clean Dataset Results

Graph Convolutional Network

Attention based GCN
This paper

« Similar Effectiveness compared to other approaches under adversarial-free

setting

Cora Citeseer Pubmed
GCN 31.5x+0.5 | 70.9+0.5 | 79.0+0.3
GAT 83.0x0.7 | 725207 | 79.0£0.3
RGCN | 82.8+0.6 | 71.2+0.5 | 79.1+0.3
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Against Non-Targeted Attack

* Poisoning attack on model by randomly adding edges to training graph
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Against Targeted Attacks
« Target High Value Nodes (>10 edges)

 Evasion Attack  Poison Attack

Cora Dataset Cora Dataset
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Discussion: Why does Robustness Improve?

Attention Value
is low due to
High Variance

\

« Sampling from Distribution depends on
the variance

 “Absorbs”the effect of adversarial input

Node being

attacked Clean Node —»

* High variance stops the propagation of
attacked nodes

!

Adversarial Node
or Connection



Summary

 Represent Latent vectors using Gaussian Distribution and final output is
sampled by distribution

« Compute and Propagate Mean and Variance matrix instead of hidden
representations

* Improve Robustness of GCN by reducing impact of adversarial attacks using
sampling and variance attention weights



