Defense Against Adversarial
Attacks (Theoretic-2)

Neural Networks are Vulnerable to Adversarial
Attacks

« W.l.0.g, consider image classification problem

 Given an image as input, a neural network (NN) model predicts a class
label as the output

 Can usually craft adversarial input:
» Indistinguishable from original input
 Can fool NN to make wrong prediction

-

Predicted as

(13

Predicted as
cat” Perturbation “dog”

Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199.

Arm Race between Attacks and Defenses

| can attack

your trained
model! | can train NNs
that defend

your attack!

| find a
new attack! | find 2 new
@ defense!

End This Arm Race? Certified Robustness!

* Certified robustness = robust training + robustness verification

 Robust training:
« Train NNs In a particular way

* Robustness verification:

 For given NN model
 Verify whether there is adversarial example for given input

> |f there Is no adversarial example, any (future) attacks are destined to
fail ©

SOTA on Certified Robustness? On MNIST

« On MNIST
e {,o norm,r = 0.3
« SOTA Certified Robust Accuracy: 93.09%

« SOTA Empirical Robust Accuracy (against existing attacks): 96.34%
* https://github.com/MadryLab/mnist challenge

> Not much difference

https://github.com/MadryLab/mnist_challenge

SOTA on Certified Robustness? On CIFAR-10

* On CIFAR-10
e £, norm, r = 8/255
« SOTA Certified Robust Accuracy: 39.88%

« SOTA Empirical Robust Accuracy (against existing attacks): 65.87%
» Leaderboard: https://robustbench.github.io/

e Y, NOrm, r = 2/255
» SOTA Certified Robust Accuracy: 68.2%

» Still a gap

https://robustbench.github.io/

SOTA on Certified Robustness? On ImageNet

On ImageNet
e {5, norm, r = 2.0
« SOTA Certified Robust Accuracy: 27%

» Still hard (also for empirical robustness)

* We maintain the SOTATresults @ https://github.com/AT-
secure/Provable-Training-and-Verification-
Approaches-Towards—-Robust-Neural-Networks

https://github.com/AI-secure/Provable-Training-and-Verification-Approaches-Towards-Robust-Neural-Networks

Towards Precise Definition

We need precise definition for certified robustness

» Glven an image x with d dimension,

 with ground-truth label y € {1,2,...,C} (denoted as y € [C])
* The model F(-) gives its prediction

* We not only require F(x) =y
» but also for any x’ close to x, F(x") =y

Towards Precise Definition (Cont.d)

e How to characterize ““close”?

* Usually characterize by £, distance < pre-defined
threshold e

« Typically choose ¢, or £,
« £y require || x' —x ||, < €
e Loirequire || x' — x|l S €

x' region

x' region

10

Robust Accuracy

* We usually evaluate certified robustness by robust accuracy

Under given £, and budget e,
of certifiably robust samples in dataset
of samples in dataset

* Robust accuracy of F:

11

Hardness of Achieving Certified Robustness

* \We need to train neural networks, which is

- . 3\
* Not only good given normal inputs }G°a' of Goal of Goal of
- : standard empirical \ o
 But also robust against perturbed INnputS training defense ;e;t- ie
erense

« And we can verify its robustness against any perturbed inputs)

 Unfortunately, verifying the robustness of NN is NP-Complete
 Current exact verification approaches only work when model has <1,000 neurons
« Neural networks usually have 103 — 10° neurons

Weng, Lily, et al. "Towards Fast Computation of Certified 12
Robustness for ReLU Networks." ICML. 2018.

Incomplete Robustness Verification

« Since exact robustness verification is NP-Complete

 we often turn to incomplete robustness verification
» They use over-approximated region

L, ball
Complete
Verification: For all x" in brown region,
eriication F(x') = F(x) = yo?g ‘ NP-Complete Problem
Incomplete
Verification:

For all x" in light brown region, - .
F(x") =F(x) = yg? ‘ Have Efficient Algorithm

13

Incomplete Verification + Training

* To provide certified robustness, now we need to
« Determine an incomplete robustness verification approach
* Train the neural network to be robust in over-approximated region

* Currently, the common practice IS

Incomplete Verification — Robust Training Achieves Gogql Robust Accuracy
Approach A Approach for A Verified by A
Incomplete Verification Inspires Robust Training Achieves Good Robust Accuracy
Approach B P Approach for B Verified by B

Note: Robust training for B usually cannot achieve good robust accuracy if verified by A

14

Main Taxonomy

« Since verification inspires training approach, we categorize
certified robustness approaches by verification methods

LRabusmess Verification & Robust TrajningJ

[_Determinjstic Appma—::hesJ
|

Complete Verification
($I1I-B)

[Incomp]ete Veriﬁcation]

Probabilistic Approaches
{(a.k.a. Randomized-Smoothing Based Approaches) ($111-F) |

[
| |

Differential || Neyman-Pearson Robust
Privacy Based Training
[1651(711) | (2411661 | [Data | [Regularizati
" [108] [130]| | Augmen- M
[128] [36] tation

[19] [95] || [54] [129] [43] |
3]

I
R E—
Branch| [MILP |H Others Linear Relaxation [spp Lipschitz &
and Based | —— (§III-C) ($I11-D) | | Curvature
Bound |]) | | | | | (SIII-E)
[l
[38] [60] | [31]1[75] |[52] Linear | Linear Inequality |[Interval Linear Hybrid { Robust (90] |l (51] [105]
[17] [118] || [21] [111] [58] | § Programming || Propagation & Bound Dual Approaches | | Training | § [91] [35] §[106] [121]
[117] [45] [127] . Zonotopes Propagation ‘ ‘ [41] [133]
[15] | | I |
[121, 96] [78] [1] [L101] [47] [45] [122, 123] [134] [116] [72]
. [110] | [103] [121] [33] [34] | [104] [102] || [26] [25]
[131] [107 | {71

15

Typical Approaches for
Certified Robustness

Background: Neural Network Structure

* Input layer: vector x,
« Weights:

 Activation function:
* ReLU(x) = max{x, 0}

« Computation:
* x; = ReLU(Wyx(+ byp),
* x, = ReLU(W;x; + by),

* x, =Wp_1x,_1+ b4
« Output: x; - confidence score for
each class

(WOJ bO)» (Wl' bl)' (WL—l' bL—l)'

17

Complete Verification

* NN = linear operations + RelLU
* Robustness verification = an optimization problem

Problem 1 (Robustness Verification as Optimization). Given a

neural network fg : X — RC, input instance xqg € X, ground-
truth label yy € [C), target label y, € [C] and the radius
e = 0, we define the following optimization problem:

Myo, ye) = minimize fo(x)ye — fa(x)y, st x € By (z0).
(2)

One can certify that fy is robust at xy within radius € w.r.t.
L, norm, as long as M(yo, ;) = 0,Vy, € [C].

* What we need to do?
« Express ReLLU by easier operators, then let optimizer handle it ©

18

RelLU Formulation

e MILP Problem:

* Linear programming + some variables being binary

* Express RelLU:
 If we know x € [[,u],
* y = ReLU(x) = max{x, 0}

y<z-Ill-a)A(yzz)A(y<u-a)A(y 20)A(ac{0,1})

 Use linear relaxation (to be introduced later) to compute [and u
* Then, Gurobi MILP solver can handle this

19

RelLU Formulation

« SMT Formulation
« y = ReLU(X) = max{x, 0} &
. ((xSO)/\(y=O))V((x>O)/\(y=x))

 Then, SMT solver can handle this

20

Branch-and-Bound

* A strategy inspired from above formulation

 Conditioned on two branches: x < 0andx > 0
* Reduce to linear constraints: y = 0ory = x

» Select some neurons to condition on => reduced to linear constraints

 Relax other neurons by linear constraints
 Recall the MILP formulation:

(y<z—11-a)Aly=2)A@y<u-a)Aly>0)A@E4AL})

* Solve the LP problem: a €10,1]

» Though still slow, but in polynomial time

21

Actual Performance

 MILP faster or similar to Branch-and-Bound,
* Branch-and-bound faster than SMT

 For non-certifibly-trained NNs, they all can handle only <1k neurons
« Small models on MNIST, FashionMNIST

* For certifiably-trained NNs, MILP can handle with 10k neurons
* Medium models on MNIST, FashionMNIST
« Small models on CIFAR-10

22

Outlook

« Complete verification cannot escape the NP-Complete barrier
* Their worst-case complexity is always exponential unless NP=P

* The trend is to add different heuristics
« Towards good performance in practice
« Maybe hard to have significant improvement

23

Main Taxonomy

[Rabustuess Verification & Robust Tra.iningJ
|

{Determinjsﬁc Appwaches]

{Cﬂmplete Verification

|

(SI11-B)
[,

[].ncomplete Veriﬁcation]
|

{ak.a. Randomized-Smoothing Based Approaches) (§111-F)

Probabilistic Approaches

Differential
Privacy

Robust

Training

Neyman-Pearson
Based

Linear Relaxation SDP
(§111-C) ($111-D)
| | | | e
[38] [60] || [31] [75] Linear | Linear Inequality || Interval |Linear| Hybrid Robust [90] [51] [105]
[17] [118] | [21] [111] Programming | Propagation & Bound Dual | |Approaches | | Training | | [91] [35] |J [106] [121]
[117] [45] [127] Zonotopes | Propagation ‘ ‘ [41] [133]
[15] | T T |
[121, 96] [78] [1] [101] [47] [45] | |[122, 123] [134] [116] [72]
[110] [103] [121] [33] [34] | [104] [102]] [26] {25]
[131] [10] 7]

[65] [71]

1241 [66] —
[108] [130] @aﬂg
[128] [36]

[19] [95] || [54] [129] [43] |
f5]

24

Interval Bound Propagation

« Key idea: Propagating interval of output through layers.

 Base Case: Given input x, perturbed input range is [x — €, x + €]
* ¢: predefined radius under L., norm

* Induction:
* At layer i, suppose the range is x; € [l;, u;]

 Then, W;x; + b; is inrange: [W;, u; + W;"l; + b;, W u; + Wi u; + b;].
- W, = min{W;, 0}, W;" = max{W;, 0} elementwise

» After ReLU, we get range for layer i + 1:
[ReLU(W; u; + W;"l; + b;), ReLU(W; u; + W, u; + b;)].

25

Interval Bound Propagation (Cont. d)

Layer O Output
Layer 1 Layer 2
(Input Layer) Y Layer 3 Layer
[1o, uo] 111, uq] 115, us] |13, usz] [14, Uy]

* We can get the output interval of the last layer: [[;, u;],
* Let y, be the true class, y’ be an arbitrary another class

* If (), = (up)y,, for any perturbed input, we won’t predict the class y’

* S0, the model is robust

26

Interval Bound Propagation (Cont. d)

« As we can see, the interval bound propagation is a loose verification
approach.
* For example, x € [1,2],y € |0, 1].
« Apparently, x +y = x — y.
* But because x +y € [1,3],x —y € [0, 2].
* [1,3] and [0, 2] overlap, we cannot verify anything...

27

Robust Training for
Interval Bound Propagation

* How to solve? — Robust Training for Interval Bound Propagation

 Train NN to be easy to be verified

» Use lower bound for true class, and upper bound for any other classes in the
training objective

 Train NN to have small loss with these (loose) bounds

 Similar to PGD adversarial training, but with true bounds

« Advantage: verification iIs easy and very fast.

« Drawback: hard to train
* Require some tricks: warm start, mix with standard loss, ...

28

Linear Inequality Propagation

« Can we have tighter verification approach?
* Instead of propagating intervals, we propagate linear bounds
« Key Ingredient: Linear Relaxation for ReLU

iI'T E"IT Y i, i
‘f ' g o P 2 B :
a uo THM

I il

Different Linear Relaxations for ReLU (ReLU(x) = max {x, 0})

29

Linear Inequality Propagation (Cont.d)

* Propagate linear bounds:

Layer 1

Layer 2

Output

Layer 3 Layer

Interval Bound

. [l
Propagation [y

[lo, Uo]

Linear Bound
Propagation

[le + lll

[x, x]
le + ul]

[12,u;]

[Lox + [,
sz + uz]

[l3, us] [14, Uy]
[Lyx + 13, [Lax + Ly,
Usx +uz] Ugx + uy

30

Math Details

« Suppose we have bound for z,:
Liz + b < zi(z) < Urz + byg
From 2wy = Weze + b, deduct bound for 2, 1

[W:Lk + WJ: Uk]I + WIbL,k + W;bUL + b.l;
<Zgt1(zx)

<(W{Uk + Wi L)z + Wby + Wi br ok + be.

Then, for next layer z,.; = ReLU(Z;+1):
apply the linear bound for RelLLU

31

Linear Inequality Propagation (Cont.d)

« Advantage: tighter verification than interval bound propagation.

* Drawback: much slower than interval bound propagation.
« From 0(w?) to O(w?) per layer, where w is the layer width.

[W:_Lk + W_,:U_L]SE + W:ble + W;b;_,r‘k —|— Ibk
o “_:551:4-1(11?]
 Robust training: (WU, + Wi L) + Wibus + Wibex + br.
 Can use the lower linear bound and upper linear bound in the training

objective
 Similar to interval bound propagation.
 Easy to train, but slow (i.e., not scalable).

32

Still Tighter?

e Use linear constraints, instead of linear bounds

« Linear Bounds: * Linear Constraints:
One bottom line, one upper line Two bottom lines, one upper line
Y u Vs I,
s I 1 | I o A s /

y. . . [U

{ i

« Drawback: cannot propagate the linear bounds
* Now need to solve expensive LP problem

33

Theoretical Discussions on LP

 Salman et al.
« We tried the tightest LP problem
« We prove that we are the tightest among all linear relaxations
» We spent several weeks to solve it, on 100 CPUs
* the verification result is still bad...
S0, there is a convex barrier

* Their tightest LP problem:

min o te st 2B = WO 440 60 (:0) < D <FOEO) Wi e L), (o

I::J:[L'H-] = (L] 1ED

F

EReLU(z) = ma:{([),z), ERELU(E) = -z (z - E) ?

34

Theoretical Discussions on LP (Cont.d)

* Singh et al.

min 'z 4 ep st 2 =wlizl 4 hm,gm (zm] < AR < z {zm},"ﬂ € [L], (€)

(zlL+1] z[L]yeD

EEE {z _E):

Opery(2) = max(0,z), GTRreru(z) =

 This is not the tightest:
« | tried to add constraints that combine some neurons together and it becomes tighter ©

e ...< Zl-(l) + zj(l) g xi(l) + xj(l) < e

e < Zi(l) —_ Zj(l) < e > e < xi(l) —xj(l) < ...

35

Theoretical Discussions on LP (Cont.d)

* What happens here?

* The convex set of y after vector space transformation x — vy:
z=Wx+ b,y = ReLU(2)

 Does not take the form of elementwise RelLU relaxation

* Detall analysis require combinatoric optimization background

36

Interesting Fact

* Tighter relaxation does not yield better robust training...
« Linear bound propagation worse then interval bound propagation

* Interval bound propagation may worse than hybrid
e But just a tiny gap

* Why?
« Conjecture: tighter relaxation induces rigid landscape
« Hard to optimize

37

Outlook

* The linear relaxation approaches are well-developed

e SOmMe recent progress:

* More universal toolkits
 Auto-linear propagation of different forms of NN, like Autograd for DL training

« More theoretical analysis
 Analysis of the tightest convex relaxations

 Study of training mechanisms
 Does tight bound always good for training?

38

Recall:
Branch-and-Bound for Complete Verification

* Branch-and-Bound:

» Select some neurons to conditiononx < 0orx >0
» reduce to linear constraints

 Relax other neurons by linear constraints
 Solve the LP problem

* We can replace the linear constraints with linear bounds
« Drawback: looser bound

- Y Y
« Advantage: [| P
faster via bound propagation — 1// ’ e L * e

'

* Observe: the linear bound is differentiable
* Can optimize the lower bound’s slope toward tigher bound

39

Linear Bound - Complete Verification

* Plugin the lower bound optimization module into branch-and-bound
» Get a new complete verification approach

* This approach:
 Looser bound on each branch (due to the use of linear bound)
 But faster on each branch (free from LP solving)

* Be able to try more branches, and eventually be tighter and more
efficient

40

Main Taxonomy

[Rabustuess Verification & Robust Tra.iningJ

{Determinjsﬁc Appwaches]

{Cﬂmplete Ve:iﬁcationJ

(SI11-B)
[,

[].ncomplete Veriﬁcation]

Probabilistic Approaches

{ak.a. Randomized-Smoothing Based Approaches) (§111-F)

Privacy

{Differenlial

Neyman-Pearson
Based

Linear Relaxation SDP
(§111-C) ($111-D)
| | | e
[38] [60] || [31] [75] Linear | Linear Inequality || IrffeRal |Linear| Hybrid Robust [90] [51] [105]
[17] [118] | [21] [111] Programming | Propagation & Bol Dual | |Approaches | | Training | | [91] [35] |J [106] [121]
[117) [45] || [127] Zonotopes || Propagat [41] [133]
(1] . o | , [¥ ‘ _ ‘
[121, 96] [78] [1] [101] [47] [45] | |[122, 123] [134] [116] [72]
[110] [103] [121] [33] [34] | [104] [102]] [26] {25]
[131] [10] 7]

[65] [71]

Robust
Training

' [24] [66]
[108] [130]
[128] [36]

Regularization

[19] [95] || [54] [129] [43] |
f5]

41

Lipschitz Bound

* Lipschitz bound certification is very straightforward

¢(z) = o (P -1(. .- d1(z; W1); Wa)...; Wk)

* ReLLU has Lipschitz bound 1
- So, the whole function has Lipschitz bound [T/, ||W;]]

* We can just use this bound... or tighten it

42

Globally Lipschitz Neural Nets

* In fact, we can train NN with small global Lipschitz using regularizer
 Achieves similar certified robustness as linear relaxations on 4,

* The usage of Linfty neuron:
“(339) — ”'2'"r — w||m + 0,

* Intrintically, it has Lipschitz constant 1

43

Globally Lipschitz Neural Nets (Cont.d)

* Directly train tighter global Lipschitz bound
« How? Power methods to get the spectral norm and eigenvector
» Then regularize it

* Tsuzuku, Yusuke, Issel Sato, and Masashi Sugiyama. "Lipschitz-Margin
Training: Scalable Certification of Perturbation Invariance for Deep Neural
Networks." NIPS 2018.

* Lee, Sungyoon, Jaewook Lee, and Saerom Park. ""Lipschitz-Certifiable
Training with a Tight Outer Bound." NeurlPS 2020

44

Outlook

* This Is a novel research branch that needs further inspection
« Might be very promising

* For example, design new model structures?

45

Main Taxonomy

[Rabustuess Verification & Robust Tra.iningJ

{Determinjsﬁc Appwaches]

{Cﬂmplete Ve:iﬁcationJ

(SI11-B)
[,

[].ncomplete Veriﬁcation]

{ak.a. Randomized-Smoothing Based Approaches) (§111-F)

Probabilistic Approaches

Linear Relaxation SDP
(§111-C) (§111-D)
| | |
[38] [60] || [31] [75] Linear | Linear Inequality || IrffeRal |Linear| Hybrid Robust [90]
[17] [L18] | [21] [111] Programming || Propagation & Bo Dual Approaches | | Training | § [91] [35]
[117] [45] [127] Zonotopes | Propagat [41]
[15] | e ey |
[121, 96] (78] [1] [101] | [47) [45] | |[122, 123)| [134] | [116] [72]
[110] [103] [121] [33] [34] | [104] [102] | [26] [25]
[131] [10] (7l

Differential || Neyman-Pearson Robust

Privacy Based Training

(651 [71] | [24] [66] Regularizati
[108] [130] @@
[128] [36]

[19] [95] || [54] [129] [43] |
f5]

46

Randomized Smoothing

Cohen, Jeremy, Elan Rosenfeld, and Zico Kolter. "Certified Adversarial
Robustness via Randomized Smoothing." ICML 2019

LYy

High-Level |dea

* First, train an NN f (the “base classifier””) under Gaussian data corruption:

Clean Image Corrupted by
Gaussian Noise

 Then, smooth f into a new classifier g (the “smoothed classifier”),
defined as follows:

Adapted from Cohen et a/s slides

48

Randomized Smoothing

* g(x) = the most probably prediction by f under
random Gaussian corruptions of x

« Example:
 Consider the input x with label panda.

« Suppose that when f classifies N (x, a1):
 Panda is returned with probability 0.80
 Gibbon is returned with probability 0.15
 Cat is returned with probability 0.05

* Then g(x) = panda

Adapted from Cohen et al s slides

49

Class Probabilities Change Slowly

* If we shift this Gaussian, the probabilities of
each class can’t change by too much

 Therefore, if we know the class probabilities at
the Input x, we can certify that for sufficiently
small perturbations of x, the panda probability
remain higher than gibbon probability

Adapted from Cohen et al s slides

50

Robustness Guarantee

* Let p, be the probability of the top class (panda)
* Let pg be the probability of the runner-up class (gibbon)

* Then g probably returns the top-class panda within an £, ball around
x of radius

R =2 (071 (pa) — 071 (p)),

e Where ®~1 is the inverse standard Gaussian CDF

Adapted from Cohen et a/s slides

51

Advantages of Randomized Smoothing

* To derive robustness guarantee, we don’t need to analyze the neural
network structure

* In previous approaches, we compute some information from complex math of
neural networks

« Here, we only need to know the probability of predicting each class under
Gaussian noise

* S0, It works for large NNs, like those for ImageNet

* Also, It does not rely on NN structure, so it is generalizable

 Can be generalized to defend against data poisoning attack, label flipping
attack, etc

52

Limitations of Randomized Smoothing

 Though give robustness guarantee under £, norm
* The guaranteed radius is small
 Theoretically intractable to give good guaranteed radius under £, norm

* Need to train an NN with high accuracy under large noise
* Need to sacrifice much accuracy

53

Circumvent the Limitation:
Tighter Certification

* Indeed, we can certify larger radius for randomized smoothing

* The classical randomized smoothing only leverages P, and Py to
derive the certification

M, ={M: R¢ — [C] |m££ooth(a:o) = liarg } -

WV : .
T min T'true (‘BO ’ M smooth) .

t T
TE Mmootn: M € M Ltarg

 The tightest certification suffers from tightness barrier
« \We can use more information! minimize E..p[7(5+)]

st._Eplf(e)l = Pa,

/R A=,

Additional
Constraints

/R w(Of(e)de =,
0<Je) <1 Ve~RT

Tighter Certification (Cont.d)

* Higher order certification:

* Sample and use the gradient magnitude information

||Vmsmooth(m0)”p = ”VSEI,P[M(‘I’ +€) = y]”p

* Double sampling:
* Recently, we try to use double sampling information

m;}/fnooth(wO) - lta:g

lta:g Jta:g)

M, '={M:Rdl—>[C]

. where mM o (x); ;= Pr[M(z+e¢) =1
m;}/fnooth(mo) = ltarg } e~Q

55

Overview

* Better, but not better in magnitude

 Therefore, despite that randomized smoothing is very universal, Its
development has been faced with a barrier...

Table 1: £; certified robust accuracy w.r.t. different radii ’s on MNIST and CIFAR-10. DSRS is shown in gray.

Dataset Model Certification Clean Certified Accuracy under Radius r
Approach Accuracy 0.4 0.8 1.2 1.6 2.0 2.4 2.8
Gaussian Neyman-Pearson 97.8% 93.5% 86.3% T73.4% 50.5% 255% 9.0% 1.8%
MNIST Augmentation DSRS ' 93.6% 87.2% 75.3% 571% 341% 142% 0.0%
Consistency Neyman-Pearson 97.9% 92.8% 86.0% T74.7% 57.2% 35.6% 13.5% 3.5%
[Jeong and Shin, 2020] DSRS) 92.8% 86.4% 76.9% 61.5% 41.9% 23.3% 7.1%
Clean Certified Accuracy under Radius r
Accuracy 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Gaussian Neyman-Pearson 70.6% 55.3% 46.2% 35.8% 24.9% 171% 10.5% 4.3%
CIFAR-10 Augmentation DSRS) 55.9% 50.3% 41.0% 305% 19.6% 12.9% 6.0%
Consistency Neyman-Pearson | . oor 50.6% 45.6% 41.5% 372% 323% 26.4% 19.8%
[Jeong and Shin, 2020] DSRS ' 50.9% 47.6% 43.9% 39.1% 345% 28.3% 21.7™%

Table 2: £, certified robust accuracy w.r.t. different radii 7’s on MNIST and CIFAR-10.

DSRS is shown in gray.

Dataset Model Certification Clean Certified Accuracy under Radius r
Approach Accuracy | 2/255 4/2556 6/255 8/255 10/255 12/255 14/255
Gaussian Neyman-Pearson | o 1% 97.4% 95.8% 92.4% 852% 73.2% 50.7% 22.6%
MNIST Augmentation DSRS) 97.5% 96.1% 92.7% 86.8% 77.6% 60.0% 29.7%
Consistency Neyman-Pearson 98.5% 98.2% 96.4% 93.9% 88.3% T787% 62.7% 37.8%
[Jeong and Shin, 2020] DSRS ’ 98.2% 96.4% 94.3% 89.0% 819% 67.5% 43.2%
Clean Certified Accuracy under Radius r
Accuracy | 1/255 2/255 3/255 4/255 5/255 6/255 7/255
Gaussian Neyman-Pearson 65.6% 45.3% 36.3% 26.7% 18.1% 10.9% 6.1% 1.9%
CIFAR-10 Augmentation DSRS) 45.6% 37.6% 28.8% 19.5% 139% 81% 21%
Consistency Neyman-Pearson 52.6% 455% 40.6% 36.0% 30.5% 25.2% 20.3% 15.6%
[Jeong and Shin, 2020] DSRS ’ 455% 409% 369% 31.9% 28.1% 22.0% 152%

56

Comparison

 Harder datasets requires larger neural networks
* MNIST < CIFAR10 < ImageNet

* Larger robust radius requires tighter verification approaches

Which approach is better?

Small radius Linear bound Randomized Smoothing Randomized Smoothing
propagation

Large radius Interval bound Global Lipschitz Randomized Smoothing
propagation
Global Lipschitz

Best Certified ~93% eps=0.3 L, ~68% with eps=— L., ~43% eps=1.0 L,

Robust Accuracy (almost solved) _ 235
~39% with eps=___ Lo

Summary

* Young but impactful area.

« Emerged in 2017

 Typical approaches proposed in
2018-2019

* Fast-growing

« Still large space to improve.

« On small dataset (MNIST), the
results are satisfying

 On large dataset (CIFAR-10,

ImageNet), still need improving.

 For example, only <40% robust
accuracy on CIFAR-10 dataset

 Possible Directions.

Tighter certification
More robust model structure:

Combine NN with other more robust model:
AdderNet? Binary Net? ...
Pruning?

Better training approach

Leverage diversity and transferability?

« Beyond cetified robustness against
data evasion attacks.

Against data poisoning attacks
Against watermarks

Static debugging of NN

RL, NLP, CV

