
Defense Against Adversarial
Attacks (Theoretic-2)



Neural Networks are Vulnerable to Adversarial 
Attacks
• W.l.o.g, consider image classification problem

• Given an image as input, a neural network (NN) model predicts a class 
label as the output

• Can usually craft adversarial input:

• Indistinguishable from original input

• Can fool NN to make wrong prediction
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Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint arXiv:1312.6199.



Arm Race between Attacks and Defenses
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I can attack
your trained

model! I can train NNs
that defend
your attack!

I find a
new attack! I find a new
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......

......



End This Arm Race? Certified Robustness!

• Certified robustness = robust training + robustness verification

• Robust training:

• Train NNs in a particular way

• Robustness verification:

• For given NN model

• Verify whether there is adversarial example for given input

If there is no adversarial example, any (future) attacks are destined to 
fail 
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SOTA on Certified Robustness? On MNIST

• On MNIST
• ℓ∞ norm, 𝑟 = 0.3
• SOTA Certified Robust Accuracy: 93.09%

• Towards Certifying ℓ∞ Robustness using Neural Networks with ℓ∞-dist Neurons

• ArXiv: 2102.05363

• SOTA Empirical Robust Accuracy (against existing attacks): 96.34%
• https://github.com/MadryLab/mnist_challenge

• Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial 
Examples

• ArXiv: 2010.03593

Not much difference
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https://github.com/MadryLab/mnist_challenge


SOTA on Certified Robustness? On CIFAR-10

• On CIFAR-10
• ℓ∞ norm, 𝑟 = 8/255
• SOTA Certified Robust Accuracy: 39.88%

• Fast and Stable Interval Bounds Propagation for Training Verifiably Robust Models.
ArXiv: 1906.00628

• SOTA Empirical Robust Accuracy (against existing attacks): 65.87%
• Leaderboard: https://robustbench.github.io/

• ℓ∞ norm, 𝑟 = 2/255
• SOTA Certified Robust Accuracy: 68.2%

• Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers. NeurIPS
2019

Still a gap
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https://robustbench.github.io/


SOTA on Certified Robustness? On ImageNet

On ImageNet

• ℓ2 norm, 𝑟 = 2.0

• SOTA Certified Robust Accuracy: 27%

• Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers. NeurIPS
2019

Still hard (also for empirical robustness)

• We maintain the SOTA results @ https://github.com/AI-
secure/Provable-Training-and-Verification-

Approaches-Towards-Robust-Neural-Networks
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https://github.com/AI-secure/Provable-Training-and-Verification-Approaches-Towards-Robust-Neural-Networks


Preliminaries



Towards Precise Definition

We need precise definition for certified robustness

• Given an image 𝑥 with 𝑑 dimension, 

• with ground-truth label 𝑦 ∈ {1,2, … , 𝐶} (denoted as 𝑦 ∈ [𝐶])

• The model 𝐹(⋅) gives its prediction

• We not only require 𝐹 𝑥 = 𝑦

• but also for any 𝑥′ close to 𝑥, 𝐹 𝑥′ = 𝑦
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Towards Precise Definition (Cont.d)

• How to characterize “close”?

• Usually characterize by ℓ𝑝 distance ≤ pre-defined 

threshold 𝜖

• Typically choose ℓ2 or ℓ∞
• ℓ2: require || 𝑥′ − 𝑥 ||2 ≤ 𝜖

• ℓ∞: require || 𝑥′ − 𝑥 ||∞ ≤ 𝜖
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Robust Accuracy

• We usually evaluate certified robustness by robust accuracy

Under given ℓ𝑝 and budget 𝜖,

• Robust accuracy of 𝐹: 
# of certifiably robust samples in dataset

# of samples in dataset
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Hardness of Achieving Certified Robustness

• We need to train neural networks, which is

• Not only good given normal inputs

• But also robust against perturbed inputs

• And we can verify its robustness against any perturbed inputs

• Unfortunately, verifying the robustness of NN is NP-Complete

• Current exact verification approaches only work when model has <1,000 neurons

• Neural networks usually have 103 – 106 neurons
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Goal of 
standard 
training

Goal of 
empirical 
defense

Goal of 
certified 
defense

Weng, Lily, et al. "Towards Fast Computation of Certified 

Robustness for ReLU Networks." ICML. 2018.



Incomplete Robustness Verification

• Since exact robustness verification is NP-Complete

• we often turn to incomplete robustness verification

• They use over-approximated region

13

𝑥

𝐿∞ ball
Complete 
Verification: For all 𝑥′ in brown region, 

𝐹 𝑥′ = 𝐹 𝑥 = 𝑦0? NP-Complete Problem

Incomplete 
Verification:

𝑥
For all 𝑥′ in light brown region, 
𝐹 𝑥′ = 𝐹 𝑥 = 𝑦0? Have Efficient Algorithm



Incomplete Verification + Training

• To provide certified robustness, now we need to

• Determine an incomplete robustness verification approach

• Train the neural network to be robust in over-approximated region

• Currently, the common practice is
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Robust Training 
Approach for A

Inspires
Incomplete Verification 
Approach A

Incomplete Verification 
Approach B

Inspires
Robust Training 
Approach for B

Achieves Good Robust Accuracy 
Verified by A

Achieves
Good Robust Accuracy 
Verified by B

……
Note: Robust training for B usually cannot achieve good robust accuracy if verified by A



Main Taxonomy

• Since verification inspires training approach, we categorize 
certified robustness approaches by verification methods
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Typical Approaches for 
Certified Robustness

1
6



Background: Neural Network Structure

• Input layer: vector 𝑥0
• Weights: 

𝑊0, 𝑏0 , 𝑊1, 𝑏1 , … (𝑊𝐿−1, 𝑏𝐿−1).

• Activation function: 

• ReLU 𝑥 = max{𝑥, 0}

• Computation:

• 𝑥1 = ReLU(𝑊0𝑥0 + 𝑏0),

• 𝑥2 = ReLU(𝑊1𝑥1 + 𝑏1),

• …

• 𝑥𝐿 = 𝑊𝐿−1𝑥𝐿−1 + 𝑏𝐿−1

• Output: 𝑥𝐿 - confidence score for 
each class
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https://www.educba.com/deep-learning-technique/



Complete Verification

• What we need to do?

• Express ReLU by easier operators, then let optimizer handle it 
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https://www.educba.com/deep-learning-technique/

• NN = linear operations + ReLU

• Robustness verification = an optimization problem



Linear Relaxation Approach
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ReLU Formulation

• MILP Problem:

• Linear programming + some variables being binary

• Express ReLU:

• If we know 𝑥 ∈ [𝑙, 𝑢],

• 𝑦 = ReLU x = max 𝑥, 0 ⇔

• Use linear relaxation (to be introduced later) to compute 𝑙 and 𝑢

• Then, Gurobi MILP solver can handle this

Tjeng, Vincent, Kai Y. Xiao, and Russ Tedrake. "Evaluating 

Robustness of Neural Networks with Mixed Integer 

Programming." ICLR 2019



ReLU Formulation

• SMT Formulation

• 𝑦 = ReLU x = max 𝑥, 0 ⇔

• 𝑥 ≤ 0 ∧ 𝑦 = 0 ∨ 𝑥 > 0 ∧ 𝑦 = 𝑥

• Then, SMT solver can handle this
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Branch-and-Bound

• A strategy inspired from above formulation

• Conditioned on two branches: 𝑥 ≤ 0 and 𝑥 > 0
• Reduce to linear constraints: 𝑦 = 0 or 𝑦 = 𝑥

• Select some neurons to condition on => reduced to linear constraints

• Relax other neurons by linear constraints

• Recall the MILP formulation:

• Solve the LP problem:

• Though still slow, but in polynomial time

21
Wang, Shiqi, et al. "Formal security analysis of neural networks 

using symbolic intervals." USENIX Security 18

𝑎 ∈ [0,1]



Actual Performance

• MILP faster or similar to Branch-and-Bound,

• Branch-and-bound faster than SMT

• For non-certifibly-trained NNs, they all can handle only <1k neurons

• Small models on MNIST, FashionMNIST

• For certifiably-trained NNs, MILP can handle with 10k neurons

• Medium models on MNIST, FashionMNIST

• Small models on CIFAR-10
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Outlook

• Complete verification cannot escape the NP-Complete barrier

• Their worst-case complexity is always exponential unless NP=P

• The trend is to add different heuristics

• Towards good performance in practice

• Maybe hard to have significant improvement
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Main Taxonomy
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Interval Bound Propagation

• Key idea: Propagating interval of output through layers.

• Base Case: Given input 𝑥, perturbed input range is 𝑥 − 𝜖, 𝑥 + 𝜖
• 𝜖: predefined radius under 𝐿∞ norm

• Induction:
• At layer 𝑖, suppose the range is 𝑥𝑖 ∈ [𝑙𝑖 , 𝑢𝑖]

• Then, 𝑊𝑖𝑥𝑖 + 𝑏𝑖 is in range: 𝑊𝑖
−𝑢𝑖 +𝑊𝑖

+𝑙𝑖 + 𝑏𝑖 ,𝑊𝑖
+𝑢𝑖 +𝑊𝑖

−𝑢𝑖 + 𝑏𝑖 .
- 𝑊𝑖

− = min{𝑊𝑖, 0} ,𝑊𝑖
+ = max{𝑊𝑖 , 0} elementwise

• After ReLU, we get range for layer 𝑖 + 1:
ReLU(𝑊𝑖

−𝑢𝑖 +𝑊𝑖
+𝑙𝑖 + 𝑏𝑖), ReLU(𝑊𝑖

+𝑢𝑖 +𝑊𝑖
−𝑢𝑖 + 𝑏𝑖) .
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Interval Bound Propagation (Cont. d)

• We can get the output interval of the last layer: [𝑙𝐿, 𝑢𝐿],
• Let 𝑦0 be the true class, 𝑦′ be an arbitrary another class

• If 𝑙𝐿 𝑦0 ≥ 𝑢𝐿 𝑦′, for any perturbed input, we won’t predict the class 𝑦′

• So, the model is robust
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Layer 0
(Input Layer)

Layer 1 Layer 2 Layer 3
Output 
Layer

[𝑙0, 𝑢0] [𝑙1, 𝑢1] [𝑙2, 𝑢2] [𝑙3, 𝑢3] [𝑙4, 𝑢4]



Interval Bound Propagation (Cont. d)

• As we can see, the interval bound propagation is a loose verification 
approach.

• For example, 𝑥 ∈ 1, 2 , 𝑦 ∈ 0, 1 .

• Apparently, 𝑥 + 𝑦 ≥ 𝑥 − 𝑦.

• But because 𝑥 + 𝑦 ∈ 1, 3 , 𝑥 − 𝑦 ∈ [0, 2].

• [1, 3] and [0, 2] overlap, we cannot verify anything…
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Robust Training for 
Interval Bound Propagation
• How to solve? – Robust Training for Interval Bound Propagation

• Train NN to be easy to be verified

• Use lower bound for true class, and upper bound for any other classes in the 
training objective

• Train NN to have small loss with these (loose) bounds

• Similar to PGD adversarial training, but with true bounds

• Advantage: verification is easy and very fast.

• Drawback: hard to train

• Require some tricks: warm start, mix with standard loss, …

28
Gowal, Sven, et al. “Scalable verified training for provably 

robust image classification.” ICCV 2019



Linear Inequality Propagation

• Can we have tighter verification approach?

• Instead of propagating intervals, we propagate linear bounds

• Key Ingredient: Linear Relaxation for ReLU
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Different Linear Relaxations for ReLU (ReLU(x) = max {x, 0})

Weng, Lily, et al. “Towards fast computation of certified robustness for relu

networks.” ICML 2018

Wong, Eric, and Zico Kolter. “Provable defenses against adversarial examples via the 

convex outer adversarial polytope.” ICML 2018

Singh, Gagandeep, et al. “Fast and Effective Robustness Certification.” NeurIPS 2018



Linear Inequality Propagation (Cont.d)

• Propagate linear bounds:
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Layer 1 Layer 2 Layer 3
Output 
Layer

[𝑙0, 𝑢0] [𝑙1, 𝑢1] [𝑙2, 𝑢2] [𝑙3, 𝑢3] [𝑙4, 𝑢4]
Interval Bound 

Propagation

Linear Bound 

Propagation
[𝑥, 𝑥] [𝐿1𝑥 + 𝑙1,

𝑈1𝑥 + 𝑢1]
[𝐿2𝑥 + 𝑙2,
𝑈2𝑥 + 𝑢2]

[𝐿3𝑥 + 𝑙3,
𝑈3𝑥 + 𝑢3]

[𝐿4𝑥 + 𝑙4,
𝑈4𝑥 + 𝑢4]



Math Details

• Suppose we have bound for 𝑧𝑘:

From , deduct bound for Ƹ𝑧𝑘+1:

Then, for next layer 𝑧𝑘+1 = ReLU Ƹ𝑧𝑘+1 :

apply the linear bound for ReLU
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Linear Inequality Propagation (Cont.d)

• Advantage: tighter verification than interval bound propagation.

• Drawback: much slower than interval bound propagation.

• From 𝑂(𝑤2) to 𝑂(𝑤3) per layer, where 𝑤 is the layer width.

• Robust training: 

• Can use the lower linear bound and upper linear bound in the training 
objective 

• Similar to interval bound propagation.

• Easy to train, but slow (i.e., not scalable).
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Still Tighter?

• Use linear constraints, instead of linear bounds
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• Linear Bounds:

One bottom line, one upper line

• Linear Constraints:

Two bottom lines, one upper line

• Drawback: cannot propagate the linear bounds

• Now need to solve expensive LP problem



Theoretical Discussions on LP

• Salman et al. (NeurIPS 2019)

• We tried the tightest LP problem

• We prove that we are the tightest among all linear relaxations

• We spent several weeks to solve it, on 100 CPUs

• the verification result is still bad… 

• So, there is a convex barrier

• Their tightest LP problem:

34
Salman, Hadi, et al. "A convex relaxation barrier to tight 

robustness verification of neural networks." NeurIPS 2019



Theoretical Discussions on LP (Cont.d)

• Singh et al. (NeurIPS 2019)

• This is not the tightest: 

• I tried to add constraints that combine some neurons together and it becomes tighter 

• … ≤ 𝑧𝑖
𝑙
+ 𝑧𝑗

𝑙
≤ ⋯ → ⋯ ≤ 𝑥𝑖

𝑙
+ 𝑥𝑗

𝑙
≤ ⋯

• … ≤ 𝑧𝑖
𝑙
− 𝑧𝑗

𝑙
≤ ⋯ → ⋯ ≤ 𝑥𝑖

𝑙
− 𝑥𝑗

𝑙
≤ ⋯
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Singh, Gagandeep, et al. "Beyond the single neuron convex 

barrier for neural network certification." NeurIPS 2019.



Theoretical Discussions on LP (Cont.d)

• What happens here?

• The convex set of 𝑦 after vector space transformation 𝑥 ↦ 𝑦:

• Does not take the form of elementwise ReLU relaxation

• Detail analysis require combinatoric optimization background

36

𝑧 = 𝑊𝑥 + 𝑏, 𝑦 = ReLU(𝑧)

Tjandraatmadja, Christian, et al. “The convex relaxation barrier, revisited: 

Tightened single-neuron relaxations for neural network verification.” NeurIPS2020



Interesting Fact

• Tighter relaxation does not yield better robust training…

• Linear bound propagation worse then interval bound propagation

• Interval bound propagation may worse than hybrid

• But just a tiny gap

• Why?

• Conjecture: tighter relaxation induces rigid landscape

• Hard to optimize

• Certified Defenses: Why Tighter Relaxations May Hurt Training? arXiv:2102.06700.
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Outlook

• The linear relaxation approaches are well-developed

• Some recent progress:

• More universal toolkits

• Auto-linear propagation of different forms of NN, like Autograd for DL training

• E.g., LiRPA (NeurIPS2020)

• More theoretical analysis

• Analysis of the tightest convex relaxations

• E.g., Tjandraatmadja, Christian et al (NeurIPS 2020), Alessandro De Palma et al (ICLR 2021)

• Study of training mechanisms

• Does tight bound always good for training?

• E.g., Certified Defenses: Why Tighter Relaxations May Hurt Training?
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Recall:

Branch-and-Bound for Complete Verification

• Branch-and-Bound:

• Select some neurons to condition on 𝑥 ≤ 0 or 𝑥 > 0
 reduce to linear constraints

• Relax other neurons by linear constraints

• Solve the LP problem

• We can replace the linear constraints with linear bounds

• Drawback: looser bound

• Advantage: 

faster via bound propagation

• Observe: the linear bound is differentiable

• Can optimize the lower bound’s slope toward tigher bound
39



Linear Bound → Complete Verification

• Plugin the lower bound optimization module into branch-and-bound

• Get a new complete verification approach

• This approach: 

• Looser bound on each branch (due to the use of linear bound)

• But faster on each branch (free from LP solving)

• Be able to try more branches, and eventually be tighter and more
efficient

40

Xu, Kaidi, et al. "Fast and complete: Enabling complete neural 

network verification with rapid and massively parallel 

incomplete verifiers." ICLR2021



Main Taxonomy
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Lipschitz Bound

• Lipschitz bound certification is very straightforward

• ReLU has Lipschitz bound 1

• So, the whole function has Lipschitz bound ς𝑖=1
𝐾 | 𝑊𝑖 |

• We can just use this bound… or tighten it

42
Szegedy, Christian, et al. "Intriguing properties of neural 

networks." ICLR 2014



Globally Lipschitz Neural Nets

• In fact, we can train NN with small global Lipschitz using regularizer

• Achieves similar certified robustness as linear relaxations on ℓ2

• The usage of Linfty neuron:

• Intrintically, it has Lipschitz constant 1

• Bohang Zhang, Zhou Lu, Tianle Cai, Di He, Liwei Wang. "Towards Certifying 
ℓ∞ Robustness using Neural Networks with ℓ∞-dist Neurons. " ArXiv: 
2102.05363 
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Globally Lipschitz Neural Nets (Cont.d)

• Directly train tighter global Lipschitz bound

• How? Power methods to get the spectral norm and eigenvector

• Then regularize it

• Tsuzuku, Yusuke, Issei Sato, and Masashi Sugiyama. "Lipschitz-Margin 
Training: Scalable Certification of Perturbation Invariance for Deep Neural 
Networks." NIPS 2018.

• Lee, Sungyoon, Jaewook Lee, and Saerom Park. "Lipschitz-Certifiable 
Training with a Tight Outer Bound." NeurIPS 2020
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Outlook

• This is a novel research branch that needs further inspection

• Might be very promising

• For example, design new model structures?
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Main Taxonomy
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Randomized Smoothing

4
7

Cohen, Jeremy, Elan Rosenfeld, and Zico Kolter. "Certified Adversarial 

Robustness via Randomized Smoothing." ICML 2019



High-Level Idea

• First, train an NN 𝑓 (the “base classifier”) under Gaussian data corruption:

48

Clean Image Corrupted by 
Gaussian Noise

• Then, smooth 𝑓 into a new classifier 𝑔 (the “smoothed classifier”), 
defined as follows:

Adapted from Cohen et al’s slides



Randomized Smoothing

• 𝑔(𝑥) = the most probably prediction by 𝑓 under 
random Gaussian corruptions of 𝑥

• Example: 

• Consider the input 𝑥 with label panda.

• Suppose that when 𝑓 classifies 𝑁(𝑥, 𝜎2𝐼):
• Panda is returned with probability 0.80

• Gibbon is returned with probability 0.15

• Cat is returned with probability 0.05

• Then 𝑔 𝑥 = panda

49
Adapted from Cohen et al’s slides



Class Probabilities Change Slowly

• If we shift this Gaussian, the probabilities of 
each class can’t change by too much

• Therefore, if we know the class probabilities at 
the input 𝑥, we can certify that for sufficiently 
small perturbations of 𝑥, the panda probability 
remain higher than gibbon probability

50
Adapted from Cohen et al’s slides



Robustness Guarantee

• Let 𝑝𝐴 be the probability of the top class (panda)

• Let 𝑝𝐵 be the probability of the runner-up class (gibbon)

• Then 𝑔 probably returns the top-class panda within an ℓ2 ball around 
𝑥 of radius

𝑅 =
𝜎

2
Φ−1 𝑝𝐴 −Φ−1 𝑝𝐵 ,

• Where Φ−1 is the inverse standard Gaussian CDF

51
Adapted from Cohen et al’s slides



Advantages of Randomized Smoothing

• To derive robustness guarantee, we don’t need to analyze the neural
network structure

• In previous approaches, we compute some information from complex math of 
neural networks

• Here, we only need to know the probability of predicting each class under 
Gaussian noise

• So, it works for large NNs, like those for ImageNet

• Also, it does not rely on NN structure, so it is generalizable

• Can be generalized to defend against data poisoning attack, label flipping 
attack, etc

52



Limitations of Randomized Smoothing

• Though give robustness guarantee under ℓ2 norm

• The guaranteed radius is small

• Theoretically intractable to give good guaranteed radius under ℓ∞ norm

• Yang, Greg, et al. "Randomized smoothing of all shapes and sizes." ICML 
2020

• Blum, Avrim, et al. "Random smoothing might be unable to certify l∞ 
robustness for high-dimensional images." JMLR 21 (2020): 1-21.

• …

• Need to train an NN with high accuracy under large noise

• Need to sacrifice much accuracy
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Circumvent the Limitation: 
Tighter Certification
• Indeed, we can certify larger radius for randomized smoothing

• The classical randomized smoothing only leverages 𝑃𝐴 and 𝑃𝐵 to 
derive the certification

• The tightest certification suffers from tightness barrier

• We can use more information!

54

Additional 

Constraints



Tighter Certification (Cont.d)

• Higher order certification:
• Mohapatra, Jeet, et al. "Higher-Order Certification for Randomized 

Smoothing." NeurIPS 2020

• Sample and use the gradient magnitude information

• Double sampling:
• Recently, we try to use double sampling information
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where



Overview

• Better, but not better in magnitude

• Therefore, despite that randomized smoothing is very universal, its 
development has been faced with a barrier…
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Comparison

• Harder datasets requires larger neural networks

• MNIST < CIFAR10 < ImageNet

• Larger robust radius requires tighter verification approaches
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MNIST CIFAR10 ImageNet

Small radius Linear bound 
propagation

Randomized Smoothing Randomized Smoothing

Large radius Interval bound 
propagation
Global Lipschitz

Global Lipschitz Randomized Smoothing

Best Certified 
Robust Accuracy

~93% eps=0.3 𝐿∞
(almost solved)

~68% with eps=
2

255
𝐿∞

~39% with eps=
8

255
𝐿∞

~43% eps=1.0 𝐿2

Which approach is better?



Summary

• Young but impactful area.

• Emerged in 2017

• Typical approaches proposed in 
2018-2019

• Fast-growing

• Still large space to improve.

• On small dataset (MNIST), the 
results are satisfying

• On large dataset (CIFAR-10, 
ImageNet), still need improving.

• For example, only <40% robust 
accuracy on CIFAR-10 dataset
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• Possible Directions.
• Tighter certification

• More robust model structure:
• Combine NN with other more robust model; 

• AdderNet? Binary Net? …

• Pruning?

• Better training approach
• Leverage diversity and transferability?

• Beyond cetified robustness against 

data evasion attacks.
• Against data poisoning attacks

• Against watermarks

• Static debugging of NN

• RL, NLP, CV

• …


