Defense Against Adversarial
Attacks (Theoretic)



Recall the empirical defense approaches

* PeerNet: leveraging the peer information (consistency)

* Distillation as a defense: ensure the classification output by a DNN
remains constant in a closed neighborhood around any given sample
extracted from the input distribution ,..(r) = £./a..(x.F))

* PGD adversarial training



Towards Deep Learning Models Resistant to
Adversarial Attacks

mgin p(0), where p(0) =Eq)~p [rgleagc L8,z + 5,y)]
e Use a natural saddle point (min-max) formulation to capture the

notion of security against adversarial attacks in a principled

mannetr.
* The formulation casts both attacks and defenses into a common

theoretical framework.
* Motivate projected gradient descent (PGD) as a universal “first-

order adversary”.



Model Capacity




Towards Deep Learning Models Resistant to
Adversarial Attacks
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Beyond the Min-max Game

* Will it help if we have more knowledge about our learning tasks?
* General understanding about ML models
* Properties of specific learning tasks



Decision Boundary Based Detection
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Decision Boundary Analysis of Adversarial
Examples
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False pos. False neg. Accuracy
Training attack Benign OPTBRITTLE OPTMARGIN Our approach Cao & Gong

MNIST, normal training

OPTBRITTLE 1.0% 1.0% 74.1%
OPTMARGIN 9.6 % 0.6% 7.2% 90.4% 10%
MNIST, PGD adversarial training
OPTBRITTLE 2.6% 2.0% 39.8%
OPTMARGIN 10.3% 0.4% 14.5%
CIFAR-10, normal training
OPTBRITTLE 5.3% 3.2% 56.8%
OPTMARGIN 8.4% 7.4% 5.3% 96.4% 50,
CIFAR-10, PGD adversarial training
OPTBRITTLE 0.0% 2.4% 51.8%

OPTMARGIN 3.6% 0.0% 1.2%




Takeaways

* Decision boundaries of DNNs are important towards improving
learning robustness

* |[solated islands in the data manifold would lead to harder
detected/defensed adversarial behaviors
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Certified Robustness for DNNs
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https://github.com/Al-secure/Provable-Training-and-Verification-Approaches-Towards-Robust-
Neural-Networks



https://github.com/AI-secure/Provable-Training-and-Verification-Approaches-Towards-Robust-Neural-Networks

Certified Robustness via Randomized
Smoothing

* Neyman-Pearson lemma
* Smoothed classifier

e Certification bound
* tightness



Related reading: Mitigating Evasion Attacks to Deep
Neural Networks via Region-based Classification

Classification
/,/" boundary Algorithm 1 Learning Length r by Searching
Input: Validation dataset V, point-based DNN elassifier C, step
size &, initial length rp.

Output: Length r.
1: Initialize r = ry.
z ACC = Accuracy of C on V.
3 ACCpe = Accuracy of the RCe , classifier on V.
4: while ACCpe = ACC do

lllustration of the region-based classification. x 5 F=r4+E
L]
T
&

is a testing benign example and x’ is the ACCge = Accuracy of the RCc p classifier on V.
. . - end while
corresponding adversarial example. The
i : refurn r — €.
hypercube centered at x’ intersects the most
with the class region that has the true label.




Certified Robustness via Randomized
Smoothing

Theorem 1. Let f : R? — Y be any deterministic or
random function, and let = ~ N(0,a°1). Let g be defined
as in (1). Suppose ca € Y and pa.pp € [0, 1] satisfy:

P(f(z+c)=ca)2pa2PB 2 51;3§P(f(r+ e) =c)

Then g(x + 0) = ca for all ||6]|2 < R, where

a

R=(®"'(pa) - 2! (75))

Smoothed gl(z) = argmax P(f(z + ) = ¢)

cEY

classifier: where = ~ N(0,0%1)

P
.




Adversarial Attacks: Decision Boundary Intuition

“It’s easy for a point to cross ~ ~
the decision boundary with a
small perturbation”




Defense: Adversarial Retraining

N
Robustness: “The points nedr~ _
(by some distance measure) a
point should have the same

label”




Defense: Adversarial Retraining

“Sample neighboring
points and add to
training dataset for

retraining”




| Defense: Adversarial Retraining ;
|
|




| Defense: Adversarial Retraining ;
|
|

“Best-effort” defense
No guarantee on robustness



Defense: Randomized Smoothing

Base: “fish”

Base: “cat”

m Original Cat Image



Defense: Randomized Smoothing

Base: “fish”

Smoothed: “cat”! l I \ \ Original Cat Image



De{ense: Randomized Smoothing

Base: “fish”

Smoothed: “still cat!”!

\ =
N Origina{Cat Image
= -



De{ense: Randomized Smoothing

Base: “fish”

Smoothed: “fish”!

-y s

Original Cat Image



Defense: Randomized Smoothing

Base: “fish”

Prediction does not
\ _ /\/ Y change within this
AN A 4 > \ /7 radius -> Robust!
I \,\ | Ong;naIrCat limaget
'y "‘\ -]




High-level Intuition of Randomized Smoothing

Base classifier -> Smoothed Classifier

Lower bound of the
most probable class

Upper bound of the
second most probable class

e Goal: “Smooth” out the classifier, use the class that
takes the largest proportion of the predictions (by
base classifier) in the Gaussian ball around the
given point x as prediction of smoothed classifier.

Image Credit: Certified Adversarial Robustness via Randomized Smoothing



Robustness Guarantee

Theorem 1. Let f : RY — Y be any deterministic or
random function, and let ¢ ~ N(0,0%1). Let g be defined
as in (1). Suppose ca € Y and pa,pB € |0, 1] satisfy:

P(f(z+€) = ca) > pa >P5 > maxP(f(z +€) =) ()

cH#cp

Then g(x 4+ 0) = ca forall ||6]|2 < R, where

R= (27" (pa) — & (P5)) 3)

* No assumption on f
* Certified radius R is large when: noise level is

high; pA is large; pB is small. When pA is close to
1, R goes to infinity.



(Informal) Understanding of Robustness
Guarantee

Lorg Lper




(Informal) Understanding of Robustness
Guarantee

Zorg Lper
)

Two points: the original image and the perturbed
1mage




(Informal) Understanding of Robustness
Guarantee

Lorq Lper
0

Robust: We would like these two points to have the
same label under the prediction of smoothed classifier




(Informal) Understanding of Robustness
Guarantee

- D
S
(Toren e
N
A N
N < =
Probability of Zor; predicted as class A
pea @or) = | Lo (7 (@) ttors ()
mN:Bori"l_N(D)o-zI) : :

: v
: Probability Density Function
v

Indicator Function

[ =1 if arg max f(x) is index of class A



(Informal) Understanding of Robustness
Guarantee

s =
1 r TSN
‘ 0 71:4 \ *acper
\N_ 7
NN
N - 7’
Pca (wori) — / N(0.021) IcA (f(x))/-borz(w)dx
TVLorit Nea

/ Lo,y (f(20)) ttoms (o) dao
zo~N (T ori,021)



(Informal) Understanding of Robustness
Guarantee

SRR
N

Lori £ v 'xfe\“ \
* * ]

§ N
YN - 7 /

N - 7’

Probability of per predicted as class A
peaoper) = | Lo (7 (@) tiper (@)
QJNQZPET—FN(O,O'2I)



(Informal) Understanding of Robustness
Guarantee

s =
//-EL' \
2.4

Lori >
orz._‘d_L {) I
\N o
YN 4

N\

-y -

A N

Ie, (f(2))prper (z)dz

pCA (-’L'pe'r')

~/:1:N:I:pe,,~—|—N(O,02I)

/ T (f (28) itper (35)ds
Ts NN(GCOM' —|—5,0'2I)



(Informal) Understanding of Robustness
Guarantee

Lorg Lper

Pori — f L., ( (20)) ttori (o) dazo
xo~N (Tori,o21)

I, (f(zs)) thper (T5)dxs

Pper :/
x5s~N (T ori+0,021)



(Informal) Understanding of Robustness
Guarantee

Lorg Lper

Pori = f ICA (f(xO))/«LOTi('TO)de — PA
xo~N (Tori,o21)

Pper :/ I, (f(xé))ﬂper(xé)dwé ¢
:IZ5NN(:I?O7=7;—|—6,O'2[)

Seek the worst case scenario!



(Informal) Understanding of Robustness
Guarantee

Lorg Lper

Pori = f ICA (f(xO))/«LOTi('TO)de — PA
xo~N (Tori,o21)

Lo, (f(z5)) phper(Ts)dxs  (*)

Pper :/
x5s~N (T ori+0,021)

worst case scenario:
“the lower bound of ( *)”



(Informal) Understanding of Robustness
Guarantee

Lorg Lper

Pori = f ICA (f(wO))/«LOTi(CUO)de — PA
xo~N (Tori,o21)

Pper :/ I, (f(zs))pper(xs)dxs (%)
x5s~N (T ori+0,021)

Worst case scenario Intuition:
for a given x, when I(f(z)) =1, -> Neyman Pearson Lemma!
tori(x) is large and piper () is small,

vice versa



(Intuitive) Connection between What We Want and
Neyman-Pearson

Pori = / ICA (f(ZUO)):UJOTi(mO)de = PA
xo~N (Zori,021)

oer = | Lo (§ @5) iper (@) das (5
xs NN(iBOM—I—(s,G'zI)

For a given x, when I(f(x)) =1, ori(x) is large and pper(x) is small, vice versa
Neyman-Pearson: Bound ratio between the two densities



(Intuitive) Connection between What We Want and
Neyman-Pearson

Pori = / ICA (f(ZUO)):UJOTi(mO)de = PA
xo~N (Zori,021)

oer = | Lo (§ @5) iper (@) das (5
xs NN(iBOM—I—(s,G'zI)

For a given x, when I(f(x)) =1, ori(x) is large and pper(x) is small, vice versa
Neyman-Pearson: Bound ratio between the two densities

def S:{xERd:'uper(x)gt},Elt>O
Nori(x)

if P(I., =1)>Pxg€ S
1 (Le4 (£(20)) ) y hen )the original image is predicted correctly with high

probability,
then P(I.,(f(z5)) =1) > P(zs € 5)
The perturbed image will also be predicted correctly with high probability.



Backup Slide

Neyman-Pearson Lemma Proof

S:{ Rd’wgg }3t>0

P(h(X) =1) > P(X € S)

P(h(Y) =1) > P(Y € S)

P(h(Y) =1) = P(Y € S)
=/hﬂmwmﬂ—/mﬂﬂz
R4 S

= l/sc h(1|z)py(z)dz—|—/Sh(1|z),uy(z)dz] — l/sh(uz)py(z)dz—i—[qh(0|z)py(z)dz]
= [ rUy )z = [ Oy (s

f h(1|z),u,X(z)dz—/h(0|z),ux(z)dz}
L Se S
_LJMVMX@M%+LﬁUVMX&M%—LhUMmX@M%—LﬁWVMX&M4

:/Rd h(1|z);1,x(z)dz—/spx(z)dz]

—t[P(h(X) = 1) — P(X € S)]

>0



Use Neyman-Pearson to show Robustness Condition

1 _ (m_(5+mori))2
S:{xeRd:‘W((m))gt},awo uper(w)_azwe’(p( 207 )
ori\T . o r—2.:)2
H Hori (:L‘) ﬁ exp (— ( 20"2”) )
P(I.,(f(xo)) =1) > P(xg € S) 1 . 25T$ori + H5H2
=exp| —0 "z —
0'2 20‘2

P(le,(f(zs)) =1) 2 P(zs € 5)
= exp (adTa: + b)
1
a = ;
b — _25Ta:0fm; S5 ”5“2
B 202

t = exp(af +b)

Mper (37)
Hori (ZL‘)

§t®exp(a5Ta:—|—b) <tsdlz<p



(Revisit) Robustness Theorem

Theorem 1 (restated). Let f : R® — ) be any deterministic or random function. Let € ~ N(0,0%I). Let g(z) =
arg max, P(f(z + €) = c). Suppose that for a specific x € R?, there exist c4 € ) and pa,PB € [0,1] such that:

]p(_f(.’z-i-s)=CA)2E2EZ$%§P(f($+E)=C) (6)

Then g(z + ) = ca forall ||0]|2 < R, where

R=2(27 (pa) ~ 7' (75) ™
:COT"I: ‘ ‘ mpe'r‘ o € X =Zori +E= N(.’Bom', 0'21)
5 $5EY::xori+5+€:N(mori+5,021)

Known: P(f(X)=ca)>pa and P(f(X)=cp)<psB

Need to show: P(f(Y) =ca) >P(f(Y) = cB)



(Formal) Proof of Robustness Guarantee

o _ {x c g . Hrer(®) t} 3> 0 Condition of set S:

fori(T)
t = exp(af +b)
P(Ie,(f(20)) = 1) 2 P(xo € 5)

P(Le, (f(xs) = 1) > Plas € S) exp (a6’ z +b) <t 0z <f



(Formal) Proof of Robustness Guarantee

S — {x c RY - Hper(T) _ t} t>0 Condition of set S:

om( )
g t = exp(af +b)
P(Ie, (f(20)) = 1) 2 P(zo € )

P(Le, (f(xs) = 1) > Plas € S) exp (a6’ z +b) <t 0z <f

Construct: A := {LL‘ : 5T(£C — l‘oml) < O'H(SH(I)_l(p_A)}
Easy toshow: P(X € A) =

P(X € A) =P(6" (X — zopri) < 0|6]| @ (pa))
(6T N(0,0°I) < 7|5]| @ (pa))
(
(

16]|(cZ) < o|6]|® (pa))
Z <@ '(pa))

fx=—17r AN

P
P
P



(Formal) Proof of Robustness Guarantee

S:{xERd:WSt},Ht>O
fori(T)

t = exp(af +b)
P(Ie, (f(z0)) =1) 2 P(zo € S)

P(L.,(f(z5)) = 1) > P(zs € 5) exp (ad'z +b) <t dz <P
Define: A := {:L' 61 (2 — 2or) < 0H5||(I)_1(p_A)}
Easy toshow: P(X € A) =pa

By definition:
P(f(X) =ca) = pa



(Formal) Proof of Robustness Guarantee

S:{xERd:WSt},Ht>O
fori(T)

t = exp(af +b)
P(Ie, (f(z0)) =1) 2 P(zo € S)

P(Le, (f(xs) = 1) > Plas € S) exp (a6’ z +b) <t 0z <f

Define: A := {z: 67 (2 — Zori) < 0]|6]|®(pa)}

Easy toshow: P(X € A) =pa
N\
Given: N

P(le,(f(20)) =1) =P(f(X) =ca) 2 pa =P(X € A) =P(zo € 5)



(Proof) Lower Bound of Correct Class A

S:{xERd:WSt},Ht>O
fori(T)

t = exp(af +b)
P(Ie, (f(z0)) =1) 2 P(zo € S)

P(Le, (f(xs) = 1) > Plas € S) exp (a6’ z +b) <t 0z <f

Define: A := {LL‘ . 5T(£C — Tori) < 0'H5||(I>_1(p_,4)}
P(X € A) =pa
Given:

P(Ic,(f(20)) =1) =P(f(X) =ca) 2 pa=P(X € A) =P(zo € 5)
By Neyman-Pearson Get:

P(le, (f(zs)) = 1) 2 P(zs € 5)



(Proof) Lower Bound of Correct Class A

S:{xERd:WSt},Ht>O
fori(T)

t = exp(af +b)
P(Ie, (f(z0)) =1) 2 P(zo € S)

P(Le, (f(xs) = 1) > Plas € S) exp (a6’ z +b) <t 0z <f

Define: A := {x: 67 (2 — Zori) < 0]|6]|®(pa)}
P(X € A) =pa

Given:
P(lc,(f(z0)) =1) =P(f(X) =ca) 2 pa=P(X € A) =P(z0 € 5)
By Neyman-Pearson + definition:

P(f(Y) =ca) =P(le,(f(zs)) =1) 2 P(zs € S) =P(Y € 4)



(Proof) Lower Bound of Correct Class A

S:{xERd:WSt},Ht>O
fori(T)

t = exp(af +b)
P(Ie, (f(z0)) =1) 2 P(zo € S)

P(Le, (f(xs) = 1) > Plas € S) exp (a6’ z +b) <t 0z <f

Define: A := {x: 67 (2 — Zori) < 0]|6]|®(pa)}
P(X € A) =pa

Given:
P(lc,(f(20)) = 1) = P(f(X) = ca) 2 pa = P(X € A) = P(zo € )
By Neyman-Pearson + definition:

P(f(Y) = ca) =P(lc,(f(z5)) =1) 2 P(zs € §) =P(Y € 4)

We get the lower bound!



(Recall) The Other Direction

Lori Lper

J

Correct Class A

Pori = cA (f(a70))luom' (370)d370 = DPA
mONN(fEOT'LaJ I)
Pper = / I, (f(xé))ﬂper(xé)dxé
xs~N (xor;+8,021)
Other Classes B
Pori,B = f Lo, (f(zo))thori(zo)dzo = pB
:E()NN(.’L'OM,O' I)
Pper,B = Iy, (f (z5)) thper (25)dxs

SNN(mori+5,0'2I)



(Proof) Upper Bound of Other Class B

S = {xERd : Hper(2) 2t},§|t>0
Norz’(x)

(f(z0)) =1) < P(zo € 8) t = exp(af + b)
exp (a6"z +b) >t 6"z >

P(I

CB

P(les (f(x5)) =1) < P(xs € 5)

Define: B := {a: : 5T(a: — wom') < 0||5||(I)_1(1 _E)}
P(X € B) =pp

P(les (f(z5)) =1) =P(f(Y) =cp) <pp =P(Y € B) =P(z5 € 5)

P(f(Y) =cB) =P(le;(f(zs)) = 1) S P(zs € 5) =P(Y € B)

Almost repeat the proof -> upper bound



(Formal) Proof of Robustness Guarantee

We have:
P(f(Y) = ca) > P(Y € 4)

P(Y € B) 2 P(f(Y) = cB)

We want:

P(f(Y) = ca) 2 B(Y € A) > B(Y € B) > P(f(Y) = cp)

This is the missing component!



(Formal) Proof of Robustness Guarantee

( pA
(6" N(8,0°I) < ol|0]|27" (pa))
(l6ll(eZ + [18]) < o ll5]|27" (pa))
(

Z < ® ' (pa) - @)

=& ((I)_l(p_A) — @)

(
= P(6TN(8,021) > o||d]| @7 (1 - PB))
=P(||5]|(cZ + |16]]) = ol|5|®~" (1 — PB))
—P(Z > ® (1 -pp) — @)



(Formal) Proof of Robustness Guarantee

We have:
P(f(Y) = ca) > P(Y € 4)

P(Y € B) 2 P(f(Y) = cB)

We want:

P(f(Y) = ca) 2 P(Y € A) > P(Y € B) > P(f(Y) = cp)
PYeA) =2 (@‘1(19_A) — ”%”) > & (@‘1@@) + @) =P(Y € B)

o _ 1
ol < & (27 (pa) — @~ (7B))
O Proof Done.



Experiments: Training

* Method: train the base classifier with Gaussian
data augmentation at variance o2

The log-probabilities that f classifies each noisy
point as the ground truth label of the clean point

ZlogIPs(f(a:i +e)=¢) = ZIOgIEsl[arg mgxfc(x,; +¢) = ¢
i=1

1=1
N o, | P (@ + <))
;Og [Zceyexp [ACED)]

(
(
o exp(fcz' (93% + 8))

— ccy eXp(fe(xi +€))



Experiments: Training

* Method: train the base classifier with Gaussian
data augmentation at variance o2

ZlogP (z; +€) =¢;) = ZlogIEgl[arg max f.(x; + €) = ¢

1=1

-~ - o eXp(fc?; (3% + 8))
~ 2 gl ol + 9)))

n ex ci\ T3 + €

Negative of the cross-entropy loss
under Gaussian data augmentation



Approximate Certified Accuracy

1.0
! —— 0=0.12 * Robustness/accuracy tradeoff
08 = .. e .
8 N Z_g'gg * o low -> small radii certified with
= B T = » . [
8 06 *  5=1.00 high accuracy, but large radii
D04 T NS e undefended cannot be certified.
3., * o high -> larger radii can be
certified, but smaller radii are
0/ T — : .o
00 02 04 06 08 10 12 14 certified at a lower accuracy.
radius
1.0
—— 0=0.25
3 0=0.50
§ — 0=1.00
@ P e e undefended
©
RS
=
3
| \_
2.5 3.0 3.5 4.0

radius
Approximate certified accuracy attained by randomized
smoothing on CIFAR-10 (top) and ImageNet (bottom)

Image Credit: Certified Adversarial Robustness via Randomized Smoothing



Intuition: Linear Classifier as Worst Case

Figure 3. Illustration of f* in two dimensions. The concentric
circles are the density contours of N'(z, %) and N'(z + 6, o*I).
Out of all base classifiers f which classify N'(z,0I) as c (blue)
with probability > pa, such as both classifiers depicted above,
the “worst-case” f* — the one which classifies N (z + 6, 0°1) as
¢4 with minimal probability — is depicted on the right: a linear
classifier with decision boundary normal to the perturbation 4.

“The certified bound for a linear two-class classifier is tight”

Image Credit: Certified Adversarial Robustness via Randomized Smoothing



Smoothing a Two-Class Linear Classifier

f(z) = sign(w’z +b)

Intuition: An isotropic Gaussian will put
more mass on whichever half-space its
center X lies in. So smoothing does not
change decision for any point.

Proposition 3. If f is a two-class linear classifier f(z) = sign(wTx + b), and g is the smoothed version of f with any o,
then g(x) = f(x) for any x (where f is defined).

o@) =1 = B(flz ) =1) > ; (e ~ N(0,02I))

1
> P, (signw(z +e)+b) =1) > 5

P. (wT:c+wTs+b20) >

N| ==

P(ol|w|Z > —w"z — b) > (Z ~N(0,1))

T
P (Z < M) > 1
oflwl| 2
wlz+b
o||wl|

wlz +b>0

>0

[ A A

flz)=1 the other direction (-1) is similar



Two-Class Linear Classifier Certified Radius

Proposition 4. If f is a two-class linear classifier f(z) = sign(wTx + b), and g is the smoothed version of f with any
o, then invoking Theorem I at any x (where f is defined) with pa = pa and pp = pp will yield the certified radius

_ |w'z+b|
R=—ri Thmi: R:%(@‘l(ﬁ)—@‘l(ﬁ))
Proof. In binary classification, p4 = 1 — pg, so Theorem 1 returns R = O'(I)_l(p_A).
We have:
pa=Pc(f(z+e) = g(z))
= P, (sign(w” (z + €) + b) = sign(w” z + b)) Prop3: g(z) = f(x)
= P_(sign(wz + ol|w||Z + b) = sign(wT = + b))
............................................ L PEXTRR L
wiz +b>0 s wlz+b<0 : R=
pa=P.(wlz+o|w|Z+b>0): pa=P(w'z+0o|w|Z+b<0)
T . U =
=M(Z>_ﬂj;£) : =R(Z<_E£Lﬁ)
oljw] : ollw]
T . —apL o
=R(Z<9jﬁﬁ) : =¢(;££_Q
ofwl ol wl|

& (wT:L'+b) :
= B — : T
llel : pA=¢Gﬂﬁiﬂ)

olw]



Neyman-Pearson Lemma (revisit

* The “Best” rejection region
* Alpha and beta levels
* Type | and type Il errors

The Neyman Pearson Lemma
Suppose we have a random sample X1, X», ..., X, from a probability distribution with parameter 6. Then, if
C is a critical region of size a and k is a constant such that:

L(6h)
L(0y)

< kinside the critical region C

and:

L(®)
L(6.)

> k outside the critical region C

then C is the best, that is, most powerful, critical region for testing the simple null hypothesis Hy: 0 = 8q
against the simple alternative hypothesis Hy: 0 = 0,,.

Lemma 3 (Neyman-Pearson). Let X and Y be random variables in R® with densities j1x and jiy. Let h : R — {0, 1}
be a random or deterministic function. Then:

1. IfS = {z €RY: LE’:) < t}forsomel‘ >0andP(h(X)=1)>P(X € 5), then P(h(Y)=1) > P(Y € 5).

pex(z)

2. IfS = {z eR?: LX) > t}fm‘ somet > 0and P(h(X) =1) <P(X € S), then P(h(Y) = 1) <P(Y € S).




Takeaways

* “Smoothed” classifiers can improve the consistency of nearby regions
for a given instance

* The best test from Neyman-pearson provides tight bound for the
certified robustness

* There are many variations of certified robustness via randomized
smoothing



Provable Defenses Against Adversarial Examples
via the convex outer adversarial polytope

* A method to learn deep RelLU-based classifiers which are provably
robust against norm bounded adversarial perturbations

* Consider a convex outer approximation of the set of activations
reachable through a norm-bounded perturbation

* A robust optimization procedure that minimizes the worst case loss
over the outer region (linear program)

* Execute a few more forward and backward passes through a modified
network and achieve provable robustness to any norm-bounded adv



Adversarial polytope for deep RelLU networks

* Given a RelLU based network
Ziv1 =W,z +b;, fori=1,...,k—1
z; =max{Z;,0}, fori =2,... . k—1

* W, represents a linear operator such as multiply or convolution

Z(x) = {folz + D) : Al < &}

A A A

Bl —0—0— | = |l

> —> >
Input = and Final layer z;. and Convex outer bound

allowable perturbations  pgep network ~ @dversarial polytope

No point within this outer approximation exists that will change the class prediction of an example



Adversarial polytope for deep ReLU networks

z Z

* Linear relaxation of ReLU ]/ V
“ Z 0’ “ Z 2’ —ﬂé _I_ (U N E)Z S —'u,ff - Bgunded ReLU;iet ; é:)on\%exrelaxation Ti :

* Robust guarantees via the convex outer adversarial polytope

minimize (21{;)3}* — (ZAk)ytarg = CTﬁk
2k

subject to % € Z.(x)

Z, () Denotes the outer bound on the adversarial polytope from replacing the ReLU constraints

C = €yr — Cytarg Challenges:

* False positive? False negative? 1. Solve the LP for each examples
e+ 0 for each target is intractable;
! 2. How to compute | and u.




Efficient Optimization via the Dual Network

e Dual problem

minimize ¢’z maximize —blv Any feasible dual solution provides a guaranteed
. . . T . g
subject to Ai_o b subject to A"v+c =0 lower bound on the solution of the primal
T

Theorem 1. The dual of (4) is of the form
maximize J.(x,gg(c, a))
“ (5)
subject to «a; ; € [0,1], Vi,

where J.(x,v) is equal to

quIHb T yl—FHl/lHl+ZZﬁ”yu]+ (6)

=2 jE€I;

and gg(c, o) is a k layer feedforward neural network given
by the equations

V| = —C
U = Wsz/i_H, fori=k—1,...,1
-
U 7€L ()
Vz',j = l/g'J‘ Vi € Iz'
i gl — agltigl- 7 €T,

fori=k—1,...,2



Efficient Robust Optimization

e Standard robust optimization
N

minimize max L(fe(z; +A),y;
: D A (fo(zi+ A),y:)
1=1
Theorem 2. Let L be a monotonic loss function that satis-
fies Property 1. For any data point (xz,y), and € > 0, the
worst case adversarial loss from (11) can be upper bounded

by

nax L(fo(z + A),y) < L(—Je(x, go(ey 1" — 1)), y),

* Distances to decision boundary

maximize €
€

subject to Je(x, ga(efy ()1’ — 1))y >0



Experiments

1.0

0.5

0'9).0 0.5 1.0 0.0 0.5 1.0

Figure 3. lllustration of classification boundaries resulting from
standard training (left) and robust training (right) with /~ balls of
size € = (.08 (shown in figure).

PROBLEM ROBUST € TEST ERROR FGSM ERROR PGD ERROR ROBUST ERROR BOUND
MNIST X 0.1 1.07% 50.01% 81.68% 100%
MNIST Vv 0.1 1.80% 3.93% 4.11% 5.82%
FASHION-MNIST X 0.1 9.36% 77.98% 81.85% 100%
FASHION-MNIST Vv 0.1 21.73% 31.25% 31.63% 34.53%

HAR X 0.05 4.95% 60.57% 63.82% 81.56%

HAR Vv 0.05 7.80% 21.49% 21.52% 21.90%

SVHN X 0.01 16.01% 62.21% 83.43% 100%

SVHN Vv 0.01 20.38% 33.28% 33.74% 40.67%




Similar reading

* Certifying some distributional robustness with principled adversarial
training

inimji Epll(0; Z)]|.
minimize IS:}EII'F)’ pl(0; Z)]

The Lagrangian relaxation for a fixed penalty

mirgie%lize {F(G) = Sl;p {Epll(0; Z)] =YW (P, Po)} = Ep,[¢~(6; Z)]}

where ¢ (0; z0) := sup {£(0; z) — yc(2, 20) } -

z€Z

For benign data, previous work obtain worse accuracy than this one



Differential privacy VS. robustness

* Certified Robustness to Adversarial Examples with Differential Privacy

|
I loss

. DNN / DP DNN T"ﬂ.lﬂfg
input x__layer1 TE?;Z? layer2  logits  softmax average scores Prediction
= =] /
| . . . 0.3 0.2 .
Al 5 : A E ® 0.2 29,1 0.1 || argmax —'(Lzazl;)
.' i . |:|: - . 3 . 0.3 0.6 P
| o o d J 0.2 0.1
- ® |
I A
g(.) noise(asq L e, 5) h(.) Q/Aq LI E(A(:B))




Takeaways

* Leveraging dual of the primal constrained optimization to provide
provable robustness guarantee

* Linear relaxation would lead to loose robustness bound



On the Effectiveness of Interval Bound
Propagation for Training Verifiably Robust Models

Perturbation found
using PGD

Empirically robust but Predictions
not provably robust model

(+) 8 (PGD)
=
}

2 (MIP)

Perturbation found
through exhaustive search
(via MIP solver)
Robustness to the projected gradient descent (PGD) attack is not a true measure of robustness
(even for small convolutional neural networks). Given a seemingly robust neural network, the
worst-case perturbation of size 0.1 found using 200 PGD iterations and 10 random restarts
(shown at the top) is correctly classified as an “eight”. However, a worst case perturbation
classified as a “two” can be found through exhaustive search (shown at the bottom)



On the Effectiveness of Interval Bound
Propagation for Training Verifiably Robust Models

* i
Adversarial Interval
polytope bounds

Specification

Illustration of interval bound propagation. From the left, the adversarial polytope (illustrated
in 2D for clarity) of the nominal image of a “nine” (in red) is propagated through a
convolutional network. At each layer, the polytope deforms itself until the last layer where it
takes a complicated and non-convex shape in logit space. Interval bounds (in gray) can be
propagated similarly: after each layer the bounds are reshaped to be axis-aligned bounding
boxes that always encompass the adversarial polytope. In logit space, it becomes easy to
compute an upper bound on the worst case violation of the specification to verify



