Open the black-box of self-supervised learning.

Yuandong Tian

facebook Artificial Intelligence

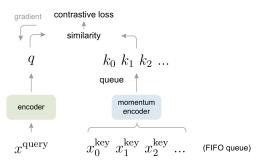
Research Scientist and Manager Facebook AI Research

Great Empirical Success

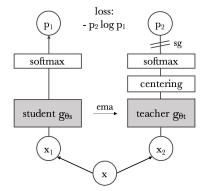
Self-supervised Learning (SSL)

Reinforcement Learning (sparse reward signals)

Self-supervised Learning (dense signals)

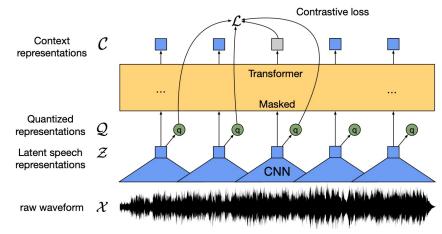


[K. He et al, Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020]



[M. Caron et al, DINO: Emerging Properties in Self-Supervised Vision Transformers, ICCV 2021]

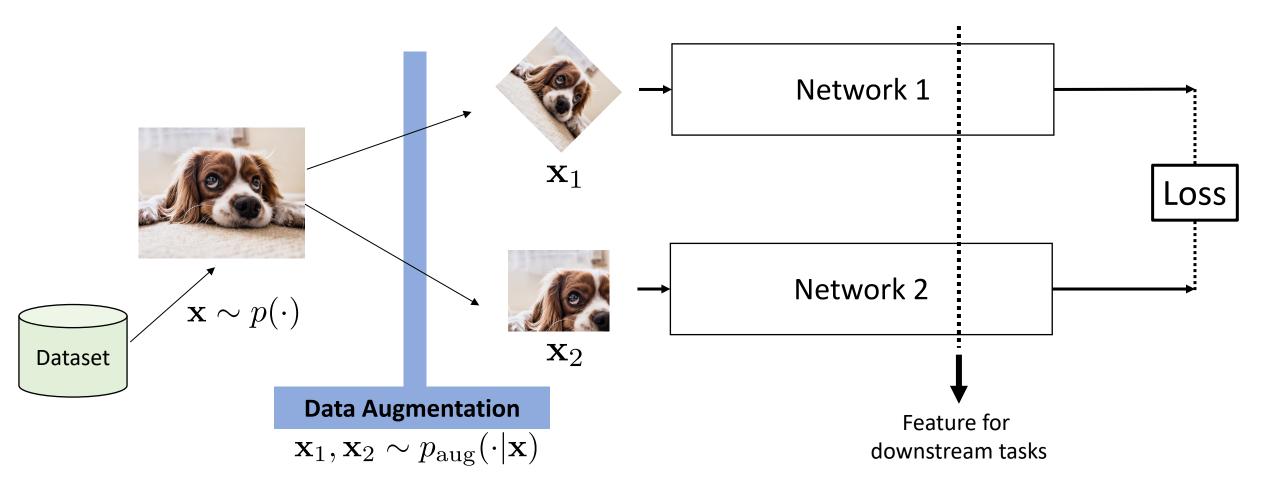
BERT, RoBERTa, ALBERT, etc



[A. Baevski et al, wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations]

Learning Representation without Human Label!
 Why they work and achieve good performance? Can we do better?

Self-supervised Learning (SSL)



Similarity with Teacher Student Setting

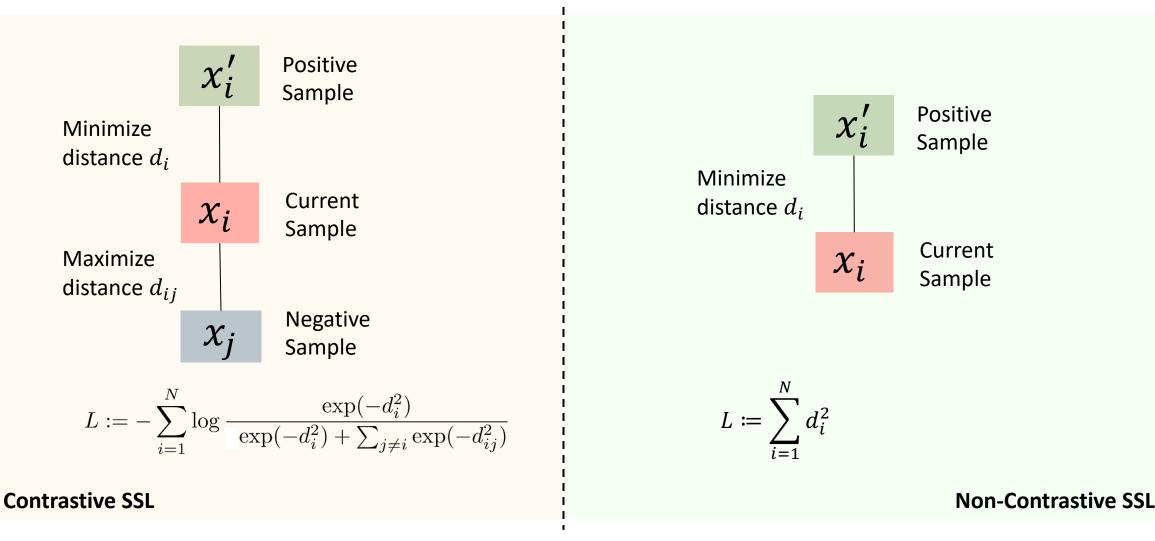


The mathematical framework is similar!

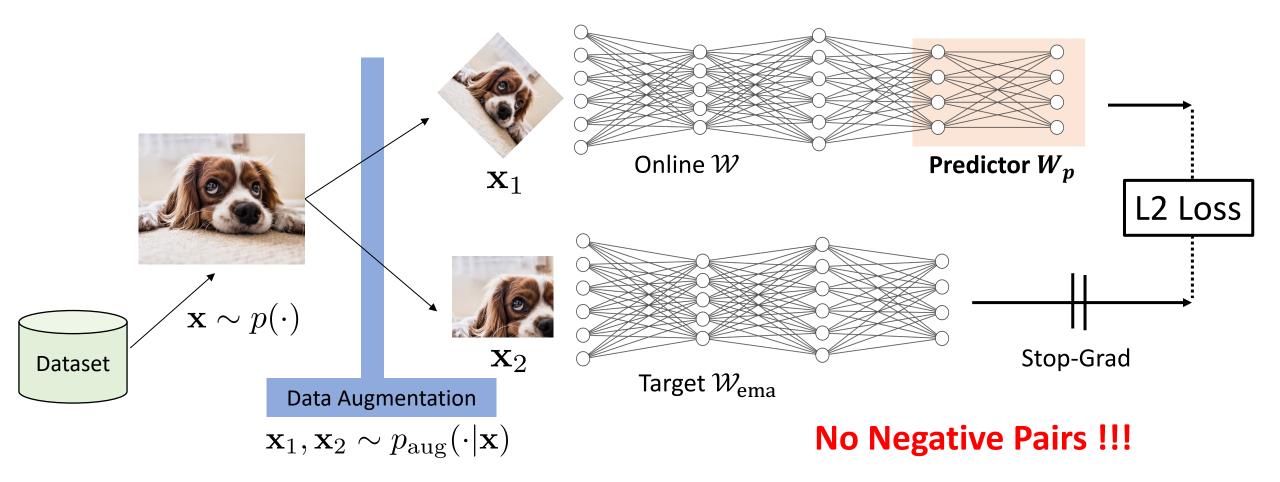
[Y. Tian, Student Specialization in Deep ReLU Networks With Finite Width and Input Dimension, ICML 2020]

facebook Artificial Intelligence [Z. Yang, Z. Chen, T. Cai, X. Chen, B. Li, Y. Tian, Understanding Robustness in Teacher-Student Setting: A New Perspective, AlStats 2021]

Contrastive versus Non-contrastive SSL

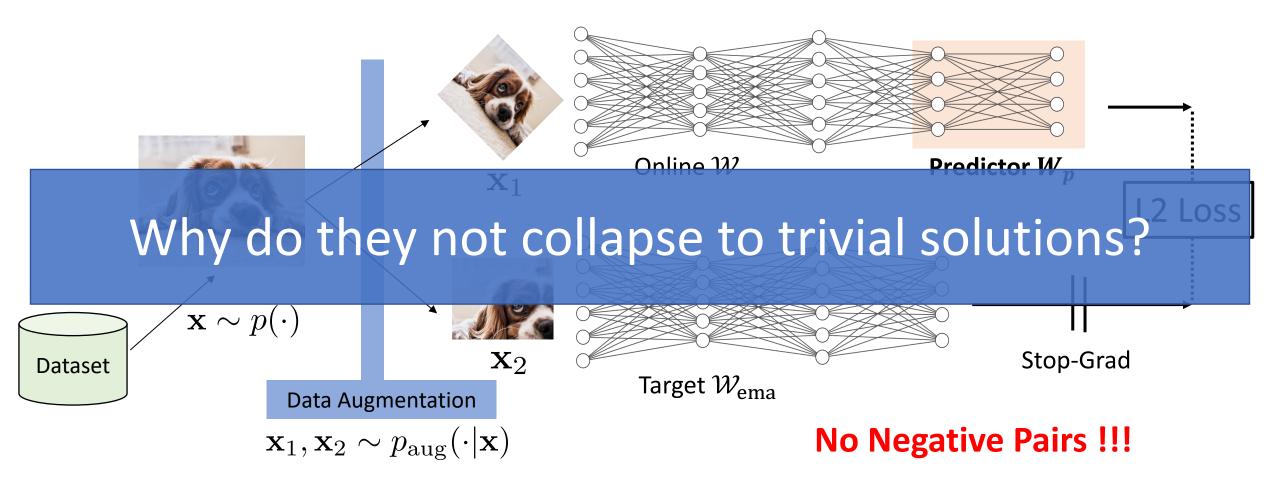


Non-contrastive SSL (BYOL/SimSiam)



BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020] **SimSiam:** [X. Chen and K. He, Exploring Simple Siamese Representation Learning, CVPR 2021]

Non-contrastive SSL (BYOL/SimSiam)?

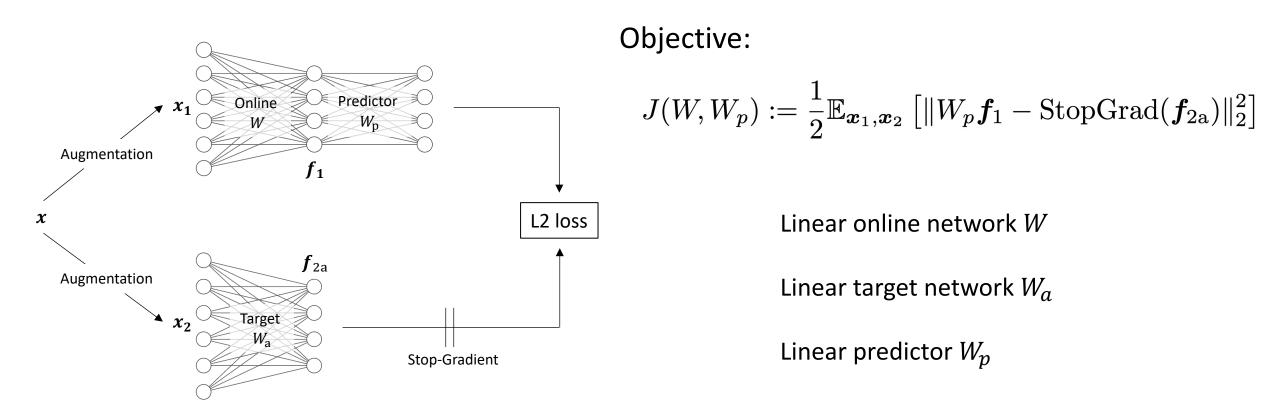


BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, NeurIPS 2020] **SimSiam:** [X. Chen and K. He, Exploring Simple Siamese Representation Learning, CVPR 2021]

A simple model

Yuandong Tian

Xinlei Chen Surya Ganguli



DirectPred [Y. Tian et al, Understanding Self-Supervised Learning Dynamics without Contrastive Pairs, *ICML'21 Outstanding Paper Honorable Mentions*]

The Dynamics of Training Procedure

Lemma 1. BYOL learning dynamics following Eqn. 1:

$$\begin{split} \dot{W}_p &= \alpha_p \left(-W_p W(X + X') + W_a X \right) W^{\intercal} - \eta W_p \\ \dot{W} &= W_p^{\intercal} \left(-W_p W(X + X') + W_a X \right) - \eta W \\ \dot{W}_a &= \beta (-W_a + W) \end{split}$$

$$\begin{split} \bar{\boldsymbol{x}}(\boldsymbol{x}) &:= \mathbb{E}_{\boldsymbol{x}' \sim p_{\text{aug}}(\cdot | \boldsymbol{x})} \left[\boldsymbol{x}' \right] \\ X &= \mathbb{E} \left[\bar{\boldsymbol{x}} \bar{\boldsymbol{x}}^{\mathsf{T}} \right] \quad \text{Covariance of the data} \\ X' &= \mathbb{E}_{\boldsymbol{x}} \left[\mathbb{V}_{\boldsymbol{x}' | \boldsymbol{x}} [\boldsymbol{x}'] \right] \quad \text{Covariance of the augmentation} \end{split}$$

Part I Why we need (1) an extra predictor and (2) stop-gradient?

Part II Why the system doesn't collapse to trivial solutions?

Part III The role played by different hyperparameters

Hyperparameter	Description
$lpha_p$	Relative learning rate of the predictor
η	Weight decay
β	The rate of Exponential Moving Average (EMA)

Part IV Novel non-contrastive SSL algorithm DirectPred

Part I No Predictor / No Stop-Gradient do not work

If there is no EMA ($W = W_a$), then the dynamics becomes:

No Predictor

$$\dot{W} = - (X' + \eta I) W$$

PSD matrix

No Stop-Gradient (Here
$$\widetilde{W_p} \coloneqq W_p - I$$
)

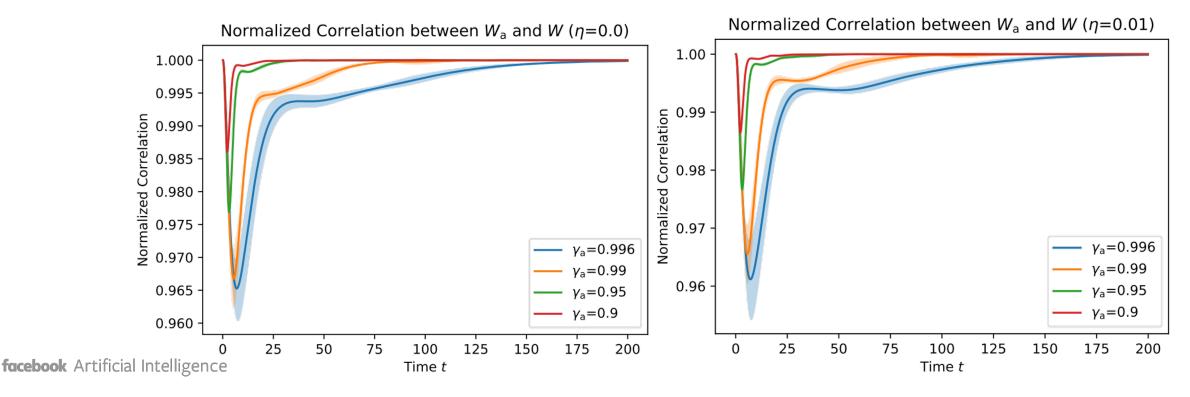
$$\frac{\mathrm{d}}{\mathrm{d}t} \operatorname{vec}(W) = -\left[X' \otimes (W_p^{\mathsf{T}} W_p + I) + X \otimes \widetilde{W}_p^{\mathsf{T}} \widetilde{W}_p + \eta I_{n_1 n_2}\right] \operatorname{vec}(W)$$
PSD matrix

In both cases, $W \rightarrow 0$

Part II Assumptions

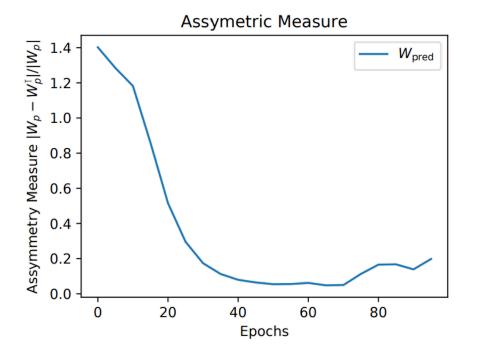
<u>Assumption 1</u> (Isotropic Data and Augmentation): X = I and $X' = \sigma^2 I$

<u>Assumption 2</u>: the EMA weight $W_a(t) = \tau(t)W(t)$ is a linear function of W(t)

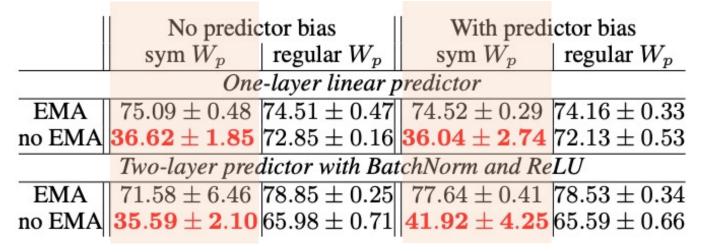


Symmetrization of the dynamics

<u>Assumption 3</u> (Symmetric predictor W_p): $W_p(t) = W_p^T(t)$



 W_p becomes increasingly symmetric over training



Perfect symmetric W_p might hurt training

Under the three assumptions, the dynamics becomes:

$$\begin{split} \dot{W}_p &= -\frac{\alpha_p}{2}(1+\sigma^2)\{W_p,F\} + \alpha_p\tau F - \eta W_p \\ \dot{F} &= -(1+\sigma^2)\{W_p^2,F\} + \tau\{W_p,F\} - 2\eta F \\ &\{A,B\} \coloneqq AB + BA \text{ is the anti-commutator.} \end{split}$$

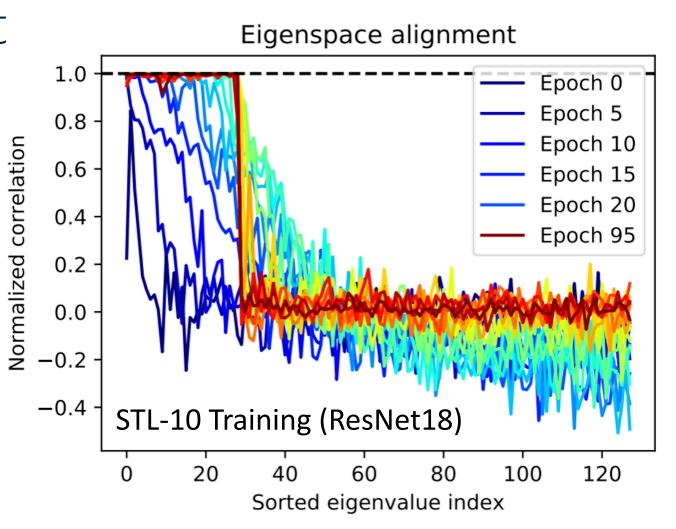
Here $F \coloneqq E[ff^T] = WXW^T$ is the correlation matrix of the input of the predictor W_p . F is well-defined even with nonlinear network.

Eigenspace Alignment

<u>Theorem 3</u>: Under certain conditions,

$$FW_p - W_p F \to 0$$

and the eigenspace of W_p and F gradually **aligns**.

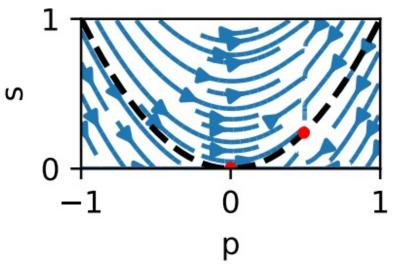


When eigenspace aligns, the dynamics becomes decoupled:

$$\dot{p}_j = \alpha_p s_j \left[\tau - (1 + \sigma^2) p_j \right] - \eta p_j$$

$$\dot{s}_j = 2p_j s_j \left[\tau - (1 + \sigma^2) p_j \right] - 2\eta s_j$$

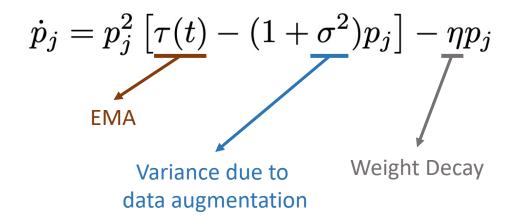
$$s_j \dot{\tau} = \beta (1 - \tau) s_j - \tau \dot{s}_j / 2.$$

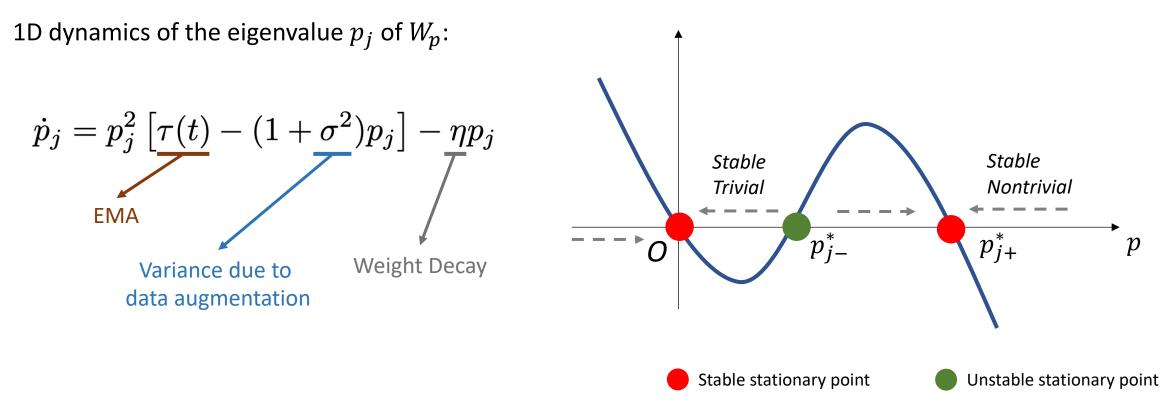


Where p_i and s_j are eigenvalues of W_p and F

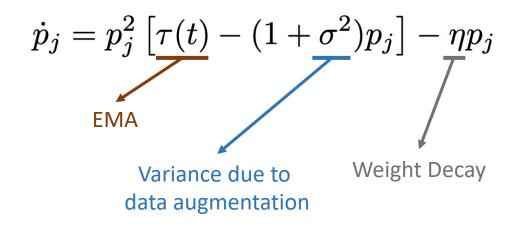
Invariance holds:
$$s_j(t) = \alpha_p^{-1} p_j^2(t) + e^{-2\eta t} c_j$$

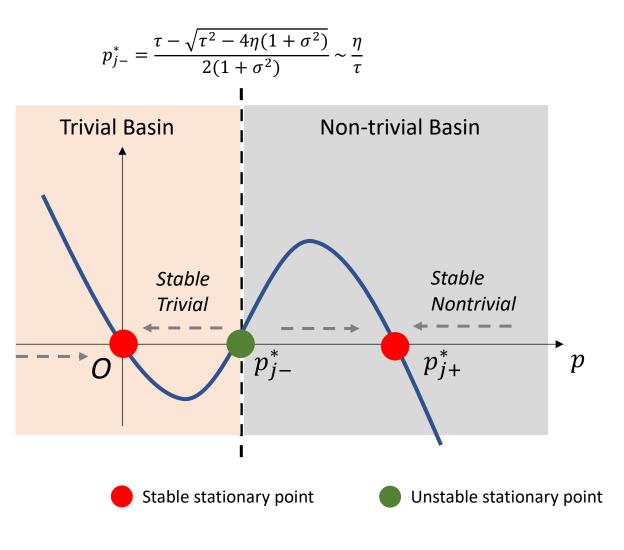
1D dynamics of the eigenvalue p_i of W_p :



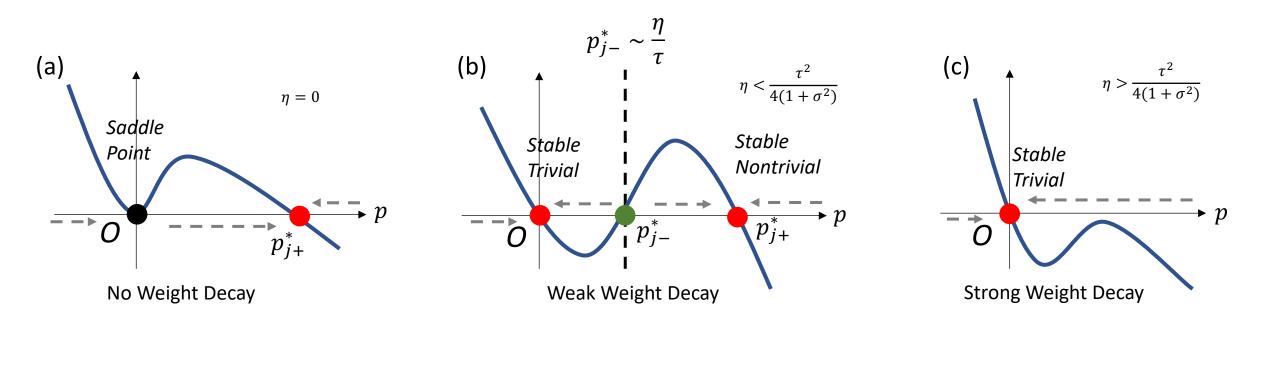


1D dynamics of the eigenvalue p_j of W_p :





<u>Part III</u> The Effect of Weight Decay η



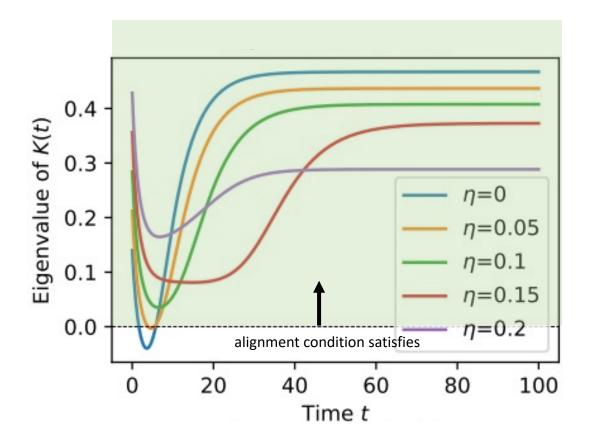
Stable stationary point

Unstable stationary point

The Benefit of Weight Decay

Eigenspace alignment condition

$$p_j [\tau - (1 + \sigma^2) p_j] < \frac{1}{2} [\alpha_p (1 + \sigma^2) s_j + 3\eta]$$

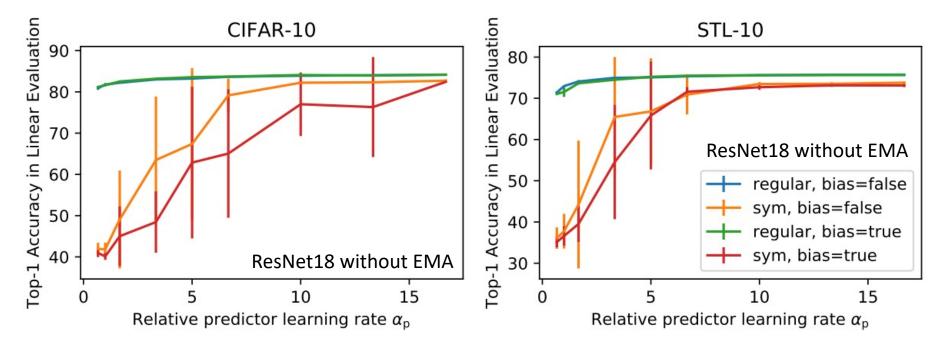


Higher weight decay \rightarrow alignment condition is more likely to satisfy!

Relative learning rate of the predictor $lpha_p$

Positive ©

- 1. Large α_p shrinks the size of trivial basin
- 2. Relax the condition of eigenspace alignment



facebook Artificial Intelligence

Negative \mathfrak{S} With very large α_p , eigenvalue of F won't grow (and no feature learning)

Exponential Moving Average rate eta

 β large $\rightarrow W_a(t)$ catches W(t) faster $\rightarrow \tau$ grows faster to 1

Positive O: Slower rate (small β) relaxes the condition of eigenspace alignment

Negative $\ensuremath{\mathfrak{S}}$: Slower rate makes the training slow and expands the size of trivial basin

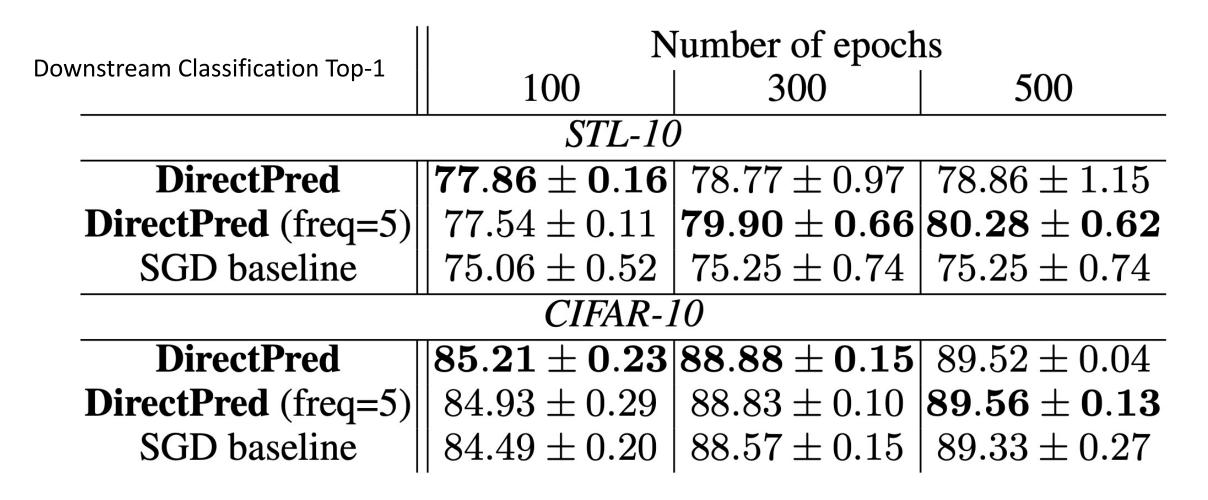
Part IV DirectPred

- Directly setting linear W_p rather than relying on gradient update.
 - 1. Estimate $\hat{F} = \rho \hat{F} + (1 \rho) E[\boldsymbol{f} \boldsymbol{f}^T]$
 - 2. Eigen-decompose $\widehat{F} = \widehat{U}\Lambda_F \widehat{U}^T$, $\Lambda_F = \text{diag}[s_1, s_2, \dots, s_d]$
 - 3. Set W_p following the invariance:

$$p_j = \sqrt{s_j} + \epsilon \max_j s_j, \ W_p = \hat{U} \operatorname{diag}[p_j] \hat{U}^{\mathsf{T}}$$

Guaranteed Eigenspace Alignment

Performance of DirectPred on STL-10/CIFAR-10



Performance of **DirectPred** on ImageNet

Downstream classification (ImageNet):

BYOL variants	Accuracy (60 ep)		Accuracy (300 ep)		
DIOL Variants	Top-1	Top-5	Top-1	Top-5	
2-layer predictor [*]	64.7	85.8	72.5	90.8	
linear predictor	59.4	82.3	69.9	89.6	
DirectPred	64.4	85.8	72.4	91.0	

* 2-layer predictor is BYOL default setting.

DirectPred using linear predictor is better than SGD with linear predictor, and is comparable with 2-layer predictor.

Summary

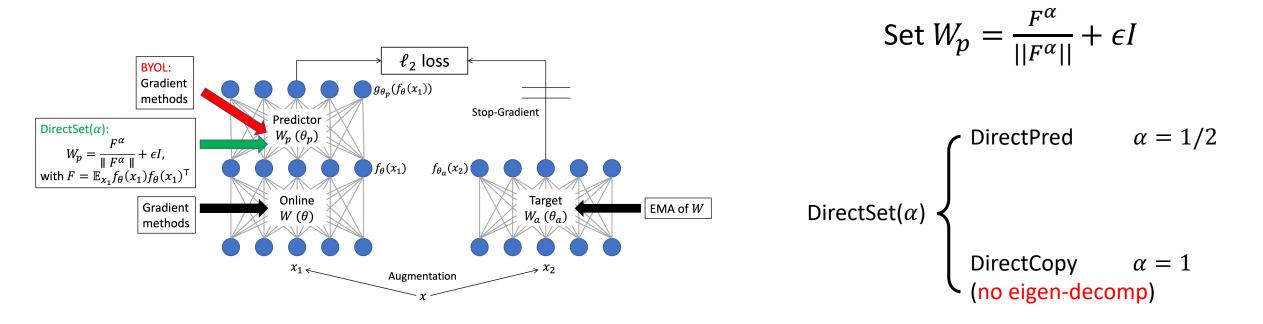
- A systematic analysis on the dynamics of non-contrastive selfsupervised learning (SSL) methods
 - **Part I** Why we need (1) an **extra predictor** and (2) **stop-gradient**?
 - **Part II** Why training doesn't **collapse** to trivial solutions?
 - **Part III** The role played by different hyperparameters
- Propose **DirectPred**, a novel non-contrastive SSL method
 - Directly align the eigenspace of the predictor W_p with the correlation matrix F
 - Comparable performance in downstream classification tasks, compared to vanilla BYOL
 - CIFAR-10/STL-10
 - ImageNet (60 epochs / 300 epochs)

facebook Artificial Intelligence

Code: https://github.com/facebookresearch/luckmatters/tree/master/ssl

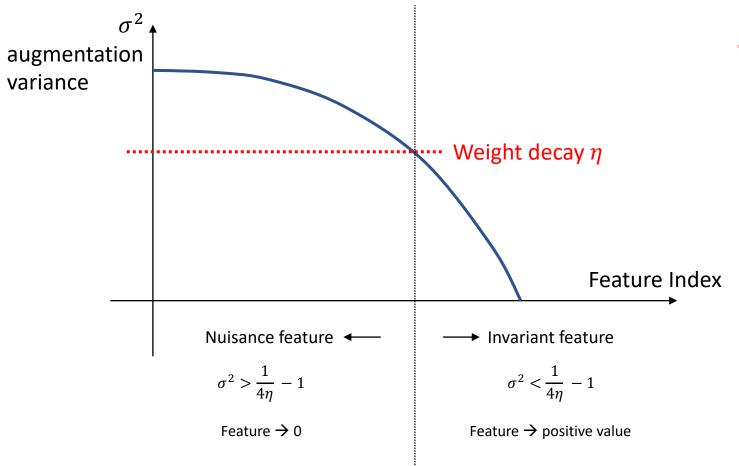
Can we get rid of eigen-decomposition?

Propose **DirectSet**(α):



DirectCopy [X. Wang, X. Chen, S. Du, Y. Tian, Towards Demystifying Representation Learning with Non-contrastive Self-supervision]

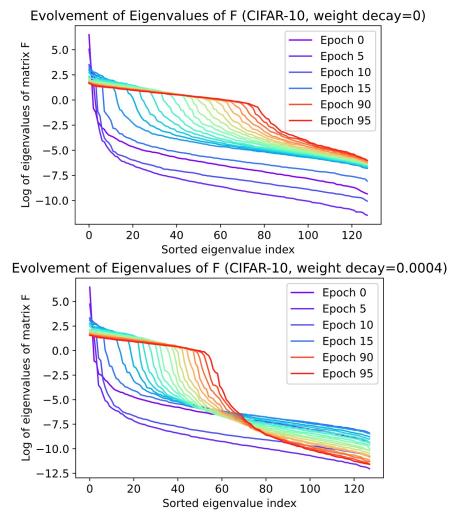
How DirectSet(α) learns the feature?



<u>Assumption 1 (Isotropic Data and Augmentation):</u> X = I and $X' = \sigma^2 I$

<u>Relaxed Assumption</u> $X' = \sigma^2 P_B$ P_B : Nuisance Subspace

Effect of Weight Decay η



Performance Peaked at $\eta = 4 \times 10^{-4}$

	Number of epochs			
	100 300			
STL-10				
$\eta = 0$	71.94 ± 0.93	$78.53 {\pm} 0.40$		
$\eta = 0.0004$	$77.83{\pm}0.56$	$82.01{\pm}0.28$		
$\eta = 0.001$	77.65 ± 0.16	$80.28 {\pm} 0.16$		
$\eta = 0.01$	58.12 ± 0.94	$58.53 {\pm} 0.76$		
CIFAR-10				
$\eta = 0$	79.15 ± 0.08	$85.35 {\pm} 0.31$		
$\eta = 0.0004$	$84.02{\pm}0.37$	$89.17{\pm}0.12$		
$\eta = 0.001$	$83.91 {\pm} 0.33$	$87.75 {\pm} 0.16$		
$\eta = 0.01$	$65.31{\pm}1.19$	65.63 ± 1.30		

The role played by α in DirectSet(α)

$$W \to \left(\frac{1+\sqrt{1-4\eta}}{2}\right)^{\frac{1}{2\alpha}} P_S$$

The larger the α , the larger the signal-noise ratio

Why not use α = 1? No eigen-decomposition!

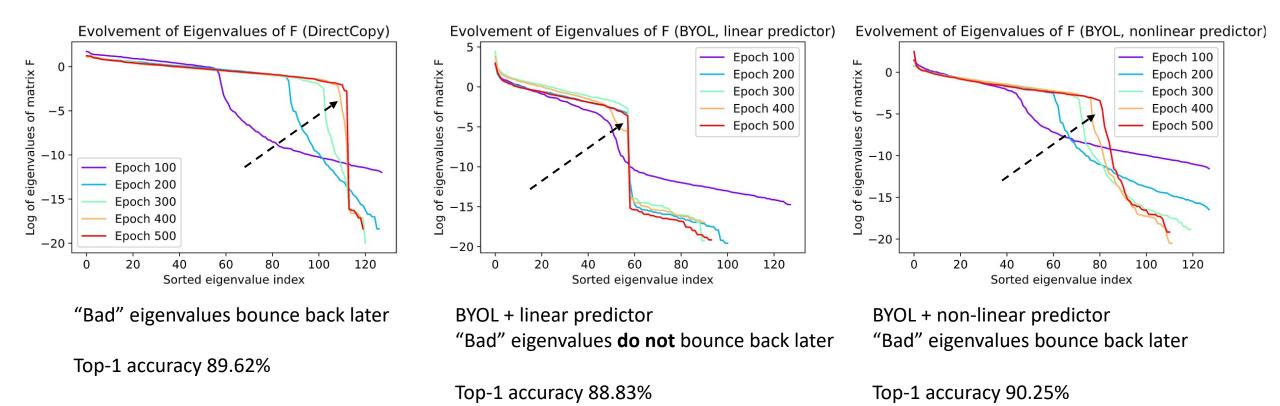
P_S: Invariant Subspace

Experimental Result of DirectSet(α)

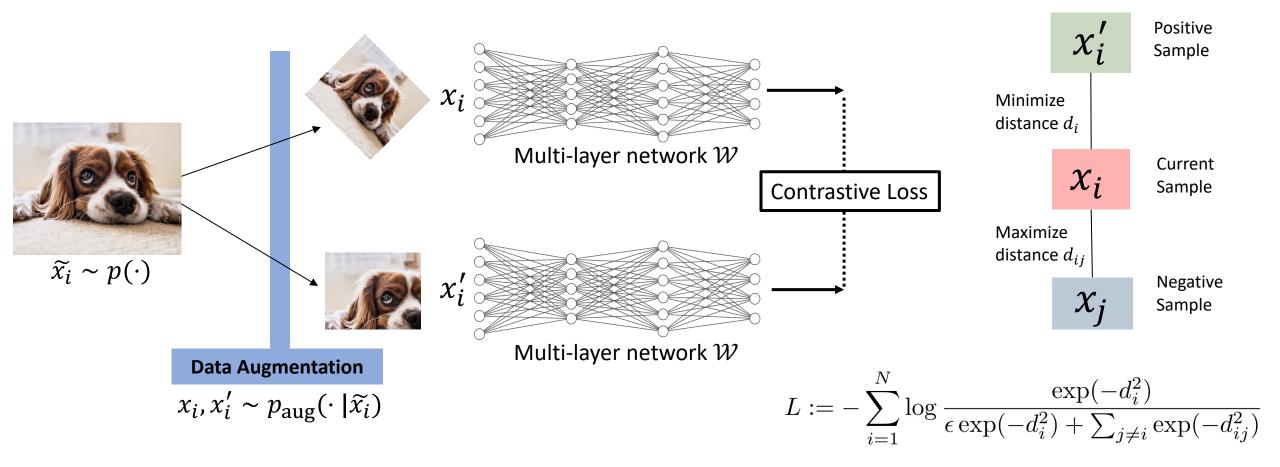
	Number of epochs				
	100	300			500
STL-10					
DirectCopy	77.83 ± 0.56	$82.01\pm$	0.28	82.9	5 ± 0.29
DirectPred	$77.86{\pm}0.16$	$78.77\pm$	0.97	78.8	6 ± 1.15
DirectPred (freq=5)	77.54 ± 0.11	$79.90 \pm$	0.66	80.2	$8 {\pm} 0.62$
SGD baseline	75.06 ± 0.52	$75.25 \pm$	0.74	75.2	5 ± 0.74
CIFAR-10					
DirectCopy	84.02±0.37	$89.17 \pm$	0.12	89.6	2 ± 0.10
DirectPred	$85.21{\pm}0.23$	$88.88\pm$	0.15	89.5	$2{\pm}0.04$
DirectPred (freq=5)	84.93±0.29	$88.83\pm$	0.10	89.5	$6 {\pm} 0.13$
SGD baseline	84.49 ± 0.20	$88.57 \pm$	0.15	89.3	$3{\pm}0.27$
	CIFAR-1	00			
DirectCopy	55.40 ± 0.19	$61.06 \pm$	0.14	62.2	3 ± 0.06
DirectPred	$56.60{\pm}0.27$	$61.65 \pm$	0.18	62.6	$8 {\pm} 0.35$
DirectPred (freq=5)	56.43 ± 0.21	$oxed{62.01} \pm$	0.22	63.1	$5{\pm}0.27$
SGD baseline	$54.94{\pm}0.50$	$60.88\pm$	0.59	61.4	$2{\pm}0.89$
ImageNet (100 epoch)	Reported 2-layer	baseline	Direc	tPred	DirectCopy
Top-1 downstream accuracy	66.5		68	3.5	68.8

	Number of epochs			
	100 300			
STL-10				
$\alpha = 2$	$76.80 {\pm} 0.22$	$80.90 {\pm} 0.18$		
$\alpha = 1$	$77.83{\pm}0.56$	$82.01{\pm}0.28$		
$\alpha = 1/2$	$77.82 {\pm} 0.37$	$77.83 {\pm} 0.37$		
$\alpha = 1/4$	$76.82 {\pm} 0.36$	$76.82{\pm}0.36$		
CIFAR-10				
$\alpha = 2$	82.96 ± 0.56	$88.60 {\pm} 0.11$		
$\alpha = 1$	84.02 ± 0.37	$89.17{\pm}0.12$		
$\alpha = 1/2$	$84.88{\pm}0.21$	$88.32 {\pm} 0.57$		
$\alpha = 1/4$	84.78 ± 0.21	$87.82 {\pm} 0.32$		

Beyond Linear Models



Contrastive Self-supervised Learning

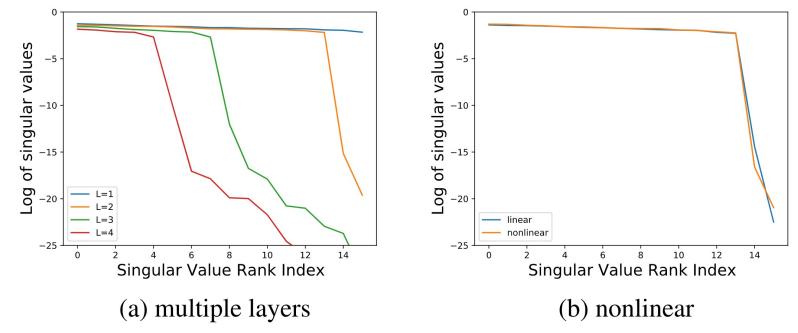


facebook Artificial Intelligence

SimCLR [T. Chen et al, A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020]

Contrastive SSL: Dimensional Collapsing

Shouldn't contrastive SSL make full use of all dimensions? The answer is No...



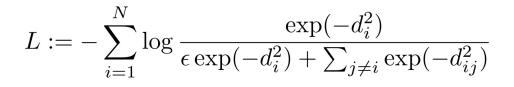
Two puzzling questions:

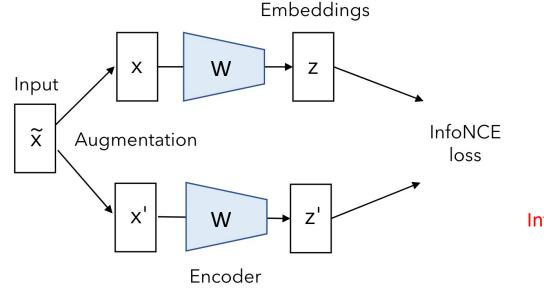
- 1. Why contrastive SSL still has collapsing issues?
- 2. Why L = 1 doesn't have collapsing, but $L \ge 2$ has the issue?

facebook Artificial Intelligence DirectCLR [L. Jing, P. Vincent, Y. LeCun, Y. Tian, Understanding Dimensional Collapse in Contrastive Self-supervised Learning]

Property of InfoNCE

Linear Model





The dynamics can be written down as follows:

$$\frac{\mathrm{d}W}{\mathrm{d}t} = W(\Sigma_0 - \Sigma_{\mathrm{Aug}})$$

Inter-class covariance

augmentation covariance

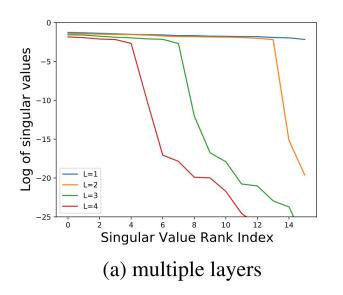
e
$$\Sigma_0 \coloneqq \sum_{i,j} \alpha_{ij} (x_i - x_j) (x_i - x_j)^T$$

e $\Sigma_{\text{aug}} \coloneqq \sum_i \left(\sum_{j \neq i} \alpha_{ij} \right) (x_i - x'_i) (x_i - x'_i)^T$

If $\Sigma_0 - \Sigma_{aug}$ has negative eigenvalues, then W will be low-rank

Deep Model leads to Dimensional Collapsing

- What if $\Sigma_0 \Sigma_{Aug}$ is PSD?
- Still dimensional collapsing for deep models.

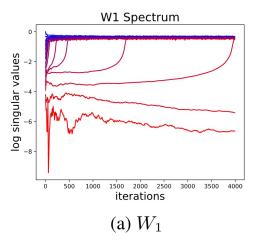


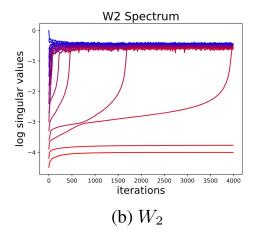
$$x \longrightarrow W_1 \longrightarrow W_2 \longrightarrow z$$

1. W_1 and W_2 will align with each other. 2. The dynamics of their singular values satisfy

$$\dot{\sigma}_{1}^{k} = \sigma_{1}^{k} (\sigma_{2}^{k})^{2} (\mathbf{v}_{1}^{k^{T}} X \mathbf{v}_{1}^{k}), \qquad \dot{\sigma}_{2}^{k} = \sigma_{2}^{k} (\sigma_{1}^{k})^{2} (\mathbf{v}_{1}^{k^{T}} X \mathbf{v}_{1}^{k})$$

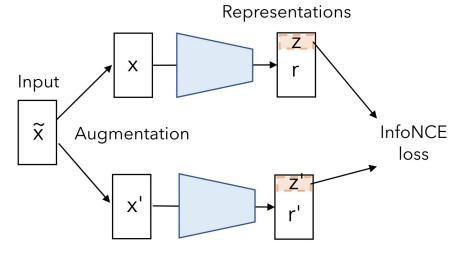
 σ_1^k and σ_2^k grow much faster for k if $(v_1^k)^T X v_1^k$ is large.





DirectCLR

• If things are aligned, why not let them align directly?



Loss function	Projector	Top-1 Accuracy
SimCLR	2-layer nonlinear projector	66.5
SimCLR	1-layer linear projector	61.1
SimCLR	no projector	51.5
DirectCLR	no projector	62.7

Encoder

