Evasion Attacks Against Various Machine Learning Models

Recall: Non-traditional Adversarial Attacks

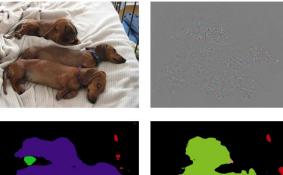
- Leveraging generative adversarial networks --- diverse, realistic, efficient
- Spatially transformed adversarial examples/Wasserstein distance based adv --- diverse, realistic
- Effective physical world attack --- spatial constrained, robust under physical conditions

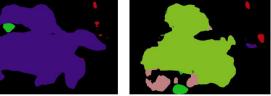
Adversarial examples for semantic segmentation and object detection

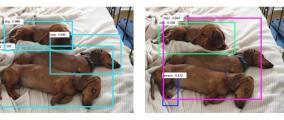
- Generating adv. is a critical step for evaluating and improving robustness of learning models.
- So far we introduced adv. against classifiers
- What about other learning tasks?

Adversarial examples for semantic segmentation and object detection

- Both segmentation and detection are based on classifying multiple targets on an image
- Dense adversary generation (DAG)







Adversarial examples for semantic segmentation and object detection

Problem statement

Untargeted attack

 $\forall n, \arg \max_{c} f_{c}(X + r, t_{n}) \neq l_{n}$ Perturbation targets Ground truth

Targeted attack $L(\mathbf{X}, \mathcal{T}, \mathcal{L}, \mathcal{L}') = \sum_{n=1}^{N} \left[f_{l_n}(\mathbf{X}, t_n) - f_{l'_n}(\mathbf{X}, t_n) \right]$

Algorithm 1: Dense Adversary Generation (DAG) **Input** : input image X; the classifier $\mathbf{f}(\cdot, \cdot) \in \mathbb{R}^C$; the target set $\mathcal{T} = \{t_1, t_2, \ldots, t_N\};$ the original label set $\mathcal{L} = \{l_1, l_2, \dots, l_N\};$ the adversarial label set $\mathcal{L}' = \{l'_1, l'_2, \dots, l'_N\};$ the maximal iterations M_0 ; **Output:** the adversarial perturbation r; 1 $\mathbf{X}_0 \leftarrow \mathbf{X}, \mathbf{r} \leftarrow \mathbf{0}, m \leftarrow 0, \mathcal{T}_0 \leftarrow \mathcal{T};$ 2 while $m < M_0$ and $\mathcal{T}_m \neq \emptyset$ do $\mathcal{T}_m = \{t_n \mid \arg\max_c \{f_c(\mathbf{X}_m, t_n)\} = l_n\};$ 4 $\mathbf{r}_m \leftarrow$ $\sum_{t_n \in \mathcal{T}_m} \left[
abla_{\mathbf{X}_m} f_{l'_n}(\mathbf{X}_m, t_n) -
abla_{\mathbf{X}_m} f_{l_n}(\mathbf{X}_m, t_n)
ight];$ 5 $\mathbf{r}'_m \leftarrow \frac{\gamma}{\|\mathbf{r}_m\|_{\infty}} \mathbf{r}_m;$ 6 | $\mathbf{r} \leftarrow \mathbf{r} + \mathbf{r}'_m;$ 7 | $\mathbf{X}_{m+1} \leftarrow \mathbf{X}_m + \mathbf{r}'_m;$ $m \leftarrow m + 1$: 9 **end Return:** r

Transferability analysis

- Cross training transfer
 - Models are trained with different subset of data
- Cross network transfer
 - Models are of different architecture
- Cross task transfer
 - Use the perturbation generated against detection to attack a segmentation network

Adversarial	FR-ZF-07	FR-ZF-0712	FR-VGG-07	FR-VGG-	R-FCN-	R-FCN-
Perturbations from	FK-ZF-V /	FK-ZF-U /1 2	FK-VGG-U/	0712	RN50	RN101
None	58.70	61.07	69.14	72.07	76.40	78.06
FR-ZF-07 (r ₁)	3.61	22.15	66.01	69.47	74.01	75.87
$\mathbf{FR}\text{-}\mathbf{ZF}\text{-}0712(\mathbf{r}_2)$	13.14	1.95	64.61	68.17	72.29	74.68
FR-VGG-07 (r ₃)	56.41	59.31	5.92	48.05	72.84	74.79
FR-VGG-0712 (r ₄)	56.09	58.58	31.84	3.36	70.55	72.78
$\mathbf{r}_1 + \mathbf{r}_3$	3.98	21.63	7.00	44.14	68.89	71.56
$\mathbf{r}_1 + \mathbf{r}_3$ (permute)	58.30	61.08	68.63	71.82	76.34	77.71
$\mathbf{r}_2 + \mathbf{r}_4$	13.15	2.13	28.92	4.28	63.93	67.25
$\mathbf{r}_2 + \mathbf{r}_4$ (permute)	58.51	61.09	68.68	71.78	76.23	77.71

Cross training

Adversarial Perturbations from	FCN-Alex	FCN-Alex*	FCN-VGG	FCN-VGG*	DL-VGG	DL-RN101
None	48.04	48.92	65.49	67.09	70.72	76.11
FCN-Alex (r ₅)	3.98	7.94	64.82	66.54	70.18	75.45
FCN-Alex* (r ₆)	5.10	3.98	64.60	66.36	69.98	75.52
FCN-VGG (r ₇)	46.21	47.38	4.09	16.36	45.16	73.98
FCN-VGG* (r ₈)	46.10	47.21	12.72	4.18	46.33	73.76
$\mathbf{r}_5 + \mathbf{r}_7$	4.83	8.55	4.23	17.59	43.95	73.26
$\mathbf{r}_5 + \mathbf{r}_7$ (permute)	48.03	48.90	65.47	67.09	70.69	76.04
$\mathbf{r}_6 + \mathbf{r}_8$	5.52	4.23	13.89	4.98	44.18	73.01
$\mathbf{r}_6 + \mathbf{r}_8$ (permute)	48.03	48.90	65.47	67.05	70.69	76.05

Cross Network

Takeaways

- Heuristically generate perturbation to move each target towards the adversarial goal
- Transferability exists for adversarial examples for segmentation/detection
- Adding multiple adversarial perturbations often works better than adding a single source of perturbation in terms of transferability

Similar work

- Delving into transferable adversarial examples and black-box attacks
 - Apply ensemble attack to attack multiple models to increase targeted transferability
 - Multi-source perturbation helps?

Ground truth: running shoe

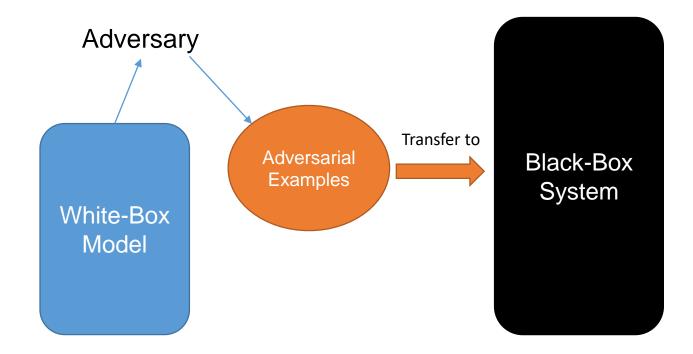
VGG16	Military uniform
ResNet50	Jigsaw puzzle
ResNet101	Motor scooter
ResNet152	Mask
GoogLeNet	Chainsaw

Targeted Adversarial Example's Transferability Among Two Models is Poor!

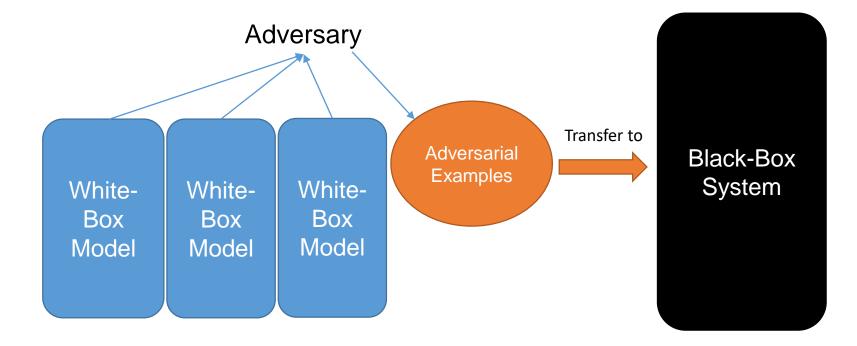
	ResNet152	ResNet101	ResNet50	VGG16	GoogLeNet	Incept-v3
ResNet152	100%	2%	1%	1%	1%	0%
ResNet101	3%	100%	3%	2%	1%	1%
ResNet50	4%	2%	100%	1%	1%	0%
VGG16	2%	1%	2%	100%	1%	0%
GoogLeNet	1%	1%	0%	1%	100%	0%
Incept-v3	0%	0%	0%	0%	0%	100%

Only 2% of the adversarial images generated for VGG16 (row) can be predicted as the targeted label by ResNet50 (column)

Black-box Attacks Based On Transferability



Ensemble Targeted Black-box Attacks Based On Transferability



Clarifai.com

brick

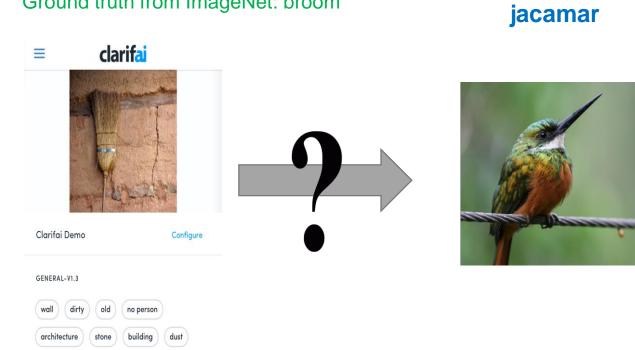
rustic

rope

ancient

soil

Ground truth from ImageNet: broom



Adversarial Example on Clarifai.com

- Ground truth: broom
- Target label: jacamar

Clarifai Demo	Configure
GENERAL-V1.3 bird nature desktop color art tra- pattern bright feather painting textu design decoration flora no person beautiful leaf garden old illustration	\leq
NSFW-V1.0	

Similar work

• Physical Adversarial Examples for Object Detectors

 $J_d(x,y) = \max_{s \in S^2, b \in B} P(s,b,y,f_{\theta}(x))$ Cell in YOLO Bounding box

Difference: instead of ensemble over models, here it ensembles over object regions

Houdini: Fooling Deep Structured Prediction Models

- Other deterministic objective function for attacking different learning models?
- Houdini: tailored for the final performance measure
 - Speech recognition
 - Pose estimation
 - Semantic segmentation

Houdini: Fooling Deep Structured Prediction Models

Optimization based method

 $\tilde{x} = \underset{\tilde{x}:\|\tilde{x}-x\|_p \leq \epsilon}{\operatorname{argmax}} \ell\left(y_{\theta}(\tilde{x}), y\right) \qquad f_2(x') = \left(\underset{i \neq t}{\max}(F(x')_i) - F(x')_t\right)^+$

• Houdini

$$\bar{\ell}_{H}(\theta, x, y) = \mathbb{P}_{\gamma \sim \mathcal{N}(0,1)} \Big[g_{\theta}(x, y) - g_{\theta}(x, \hat{y}) < \gamma \Big] \cdot \ell(\hat{y}, y)$$
Stochastic margin
Confidence of the model
Task loss

compromised semantic segmentation framework

adversarial attack

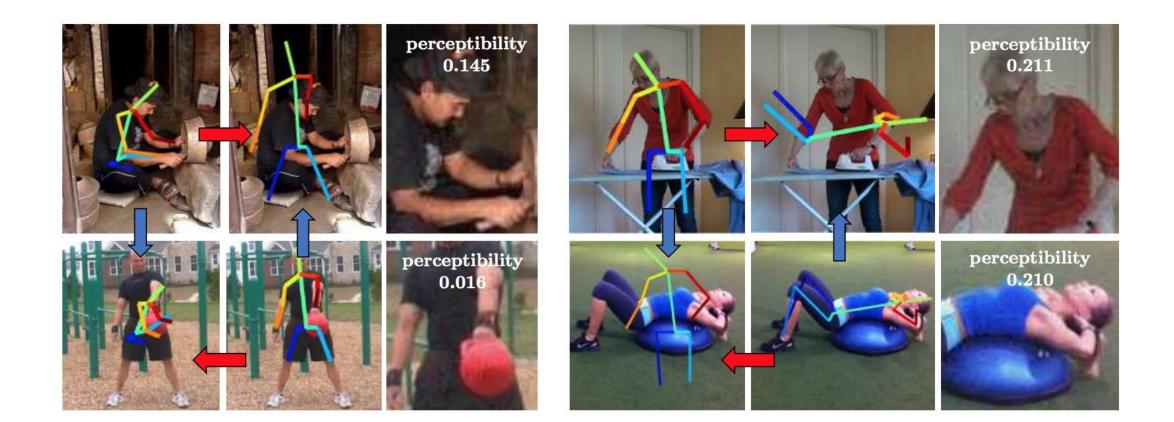
original semantic segmentation framework

(a) initial prediction

(b) adversarial prediction

(c) source image (d) perturbed image

(e) noise



	$ \epsilon = 0.3$		$\epsilon = 0.2$		$\epsilon = 0.1$		$\epsilon = 0.05$	
	WER	CER	WER	CER	WER	CER	WER	CER
CTC Houdini	68 96.1	9.3 12	51 85.4	6.9 9.2	29.8 66.5	4 6.5	20 46.5	2.5 4.5

Groundtruth Transcription:

The fact that a man can recite a poem does not show he remembers any previous occasion on which he has recited it or read it.

G-Voice transcription of the original example:

The fact that a man can decide a poem does not show he remembers any previous occasion on which he has work cited or read it.

G-Voice transcription of the adversarial example:

The fact that I can rest I'm just not sure that you heard there is any previous occasion I am at he has your side it or read it.

Groundtruth Transcription:

Her bearing was graceful and animated she led her son by the hand and before her walked two maids with wax lights and silver candlesticks.

G-Voice transcription of the original example:

The bearing was graceful an animated she let her son by the hand and before he walks two maids with wax lights and silver candlesticks.

G-Voice transcription of the adversarial example: Mary was grateful then admitted she let her son before the walks to Mays would like slice furnace filter count six.

Takeaways

- By adding margin based constraint together with the task loss, the attack can be generated against a range of tasks with high confidence
- Targeted attacks seem to be more challenging when dealing with speech recognition systems than when we consider artificial visual systems such as pose estimators or semantic segmentation systems
- Adversarial audios also transfer among models

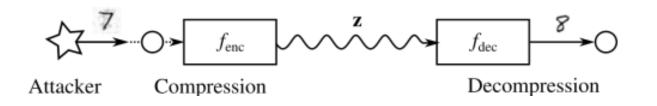
- Idea: Create adversarial inputs that can control the latent space of a generative model.
- Generate based on adversarial target

• Generative Models.

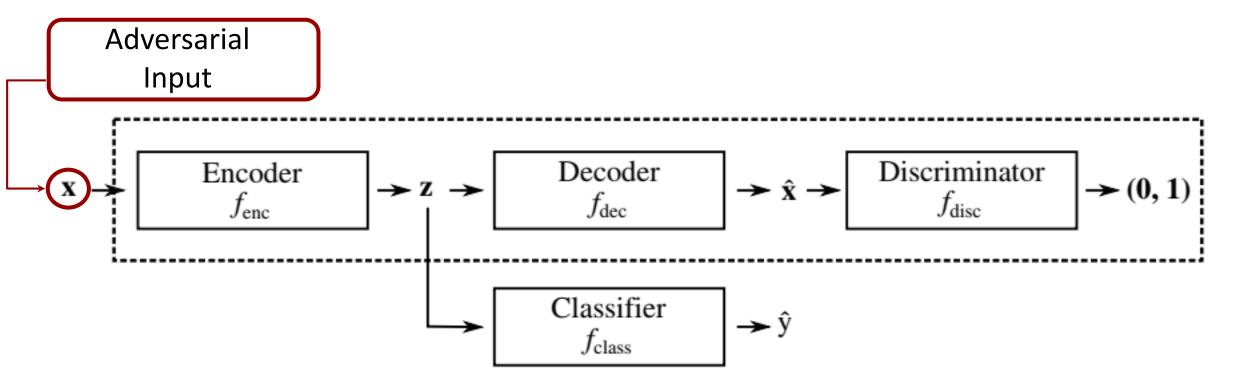
- An **encoder** maps a high-dimensional input into lower-dimensional latent representation.
- A **decoder** maps the latent representation back to a high-dimensional reconstruction.
- A latent space is an internal representation of the data.

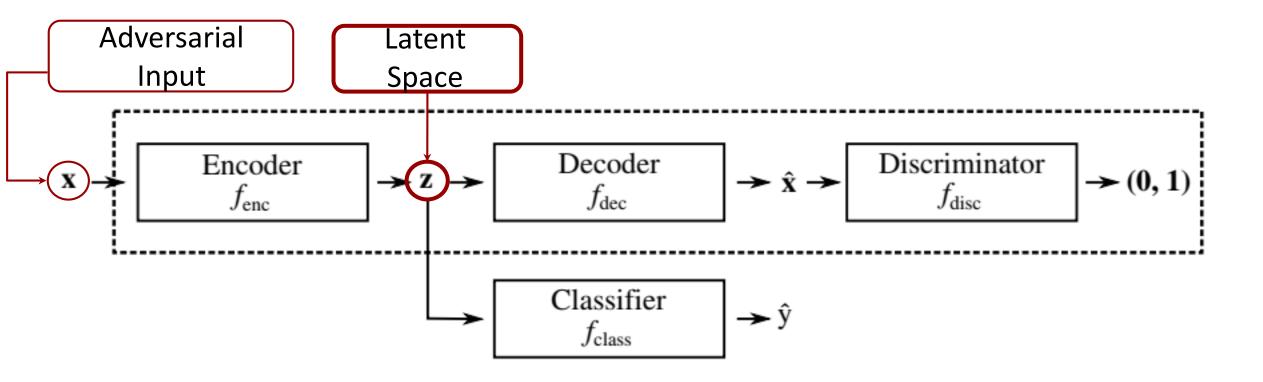
$$\mathbf{x} \rightarrow \begin{bmatrix} \text{Encoder} \\ f_{\text{enc}} \end{bmatrix} \rightarrow \mathbf{z} \rightarrow \begin{bmatrix} \text{Decoder} \\ f_{\text{dec}} \end{bmatrix} \rightarrow \hat{\mathbf{x}}$$

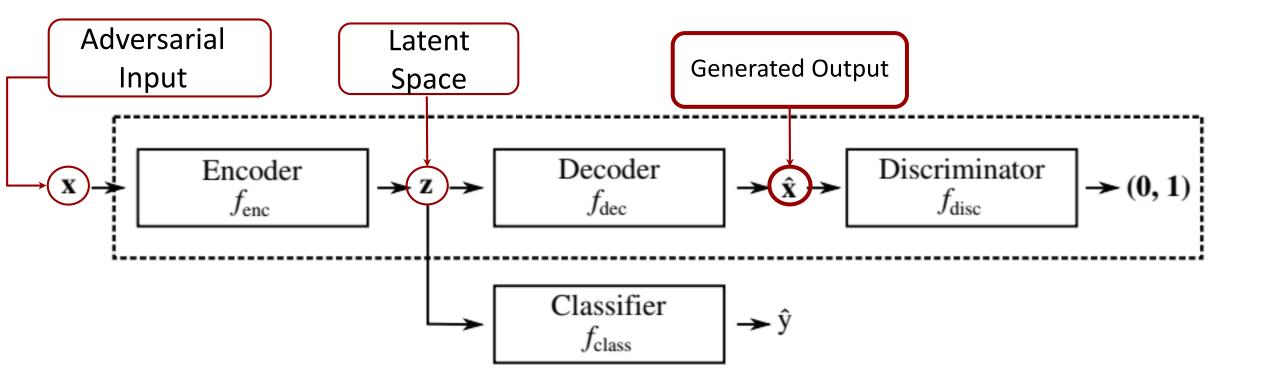
- An example attack scenario:
 - Generative model used as a compression scheme

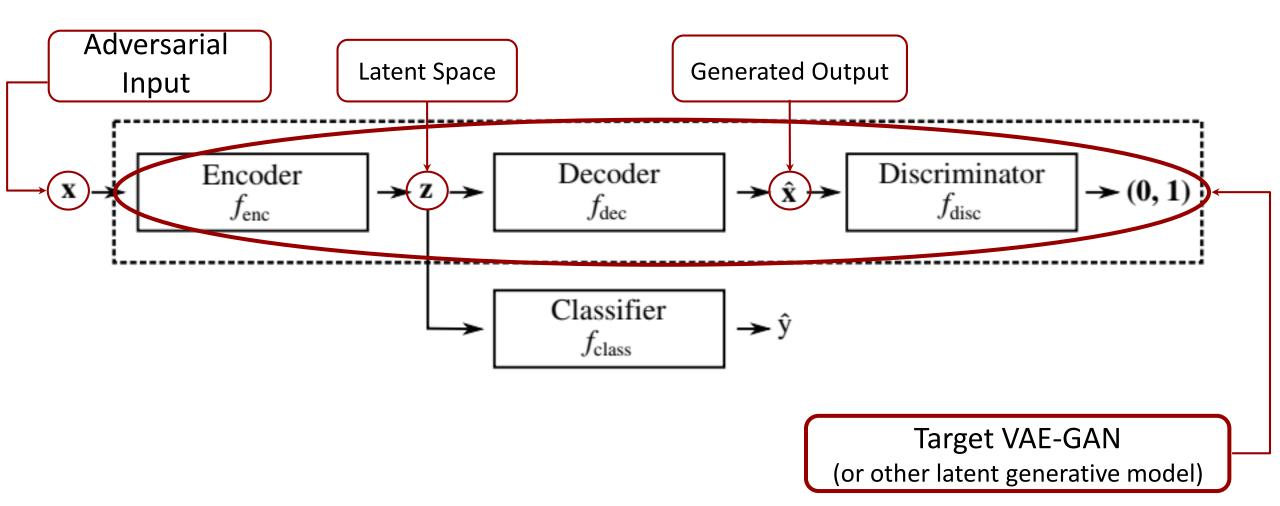


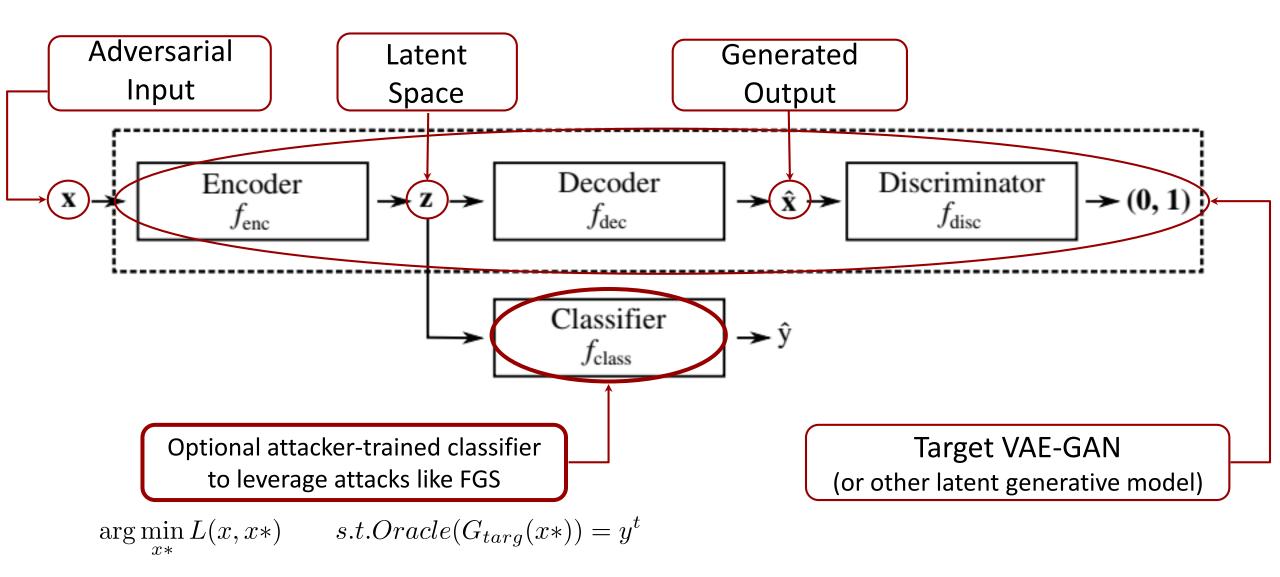
• Attacker's goal: for the decompressor to reconstruct a different image from the one that the compressor sees.

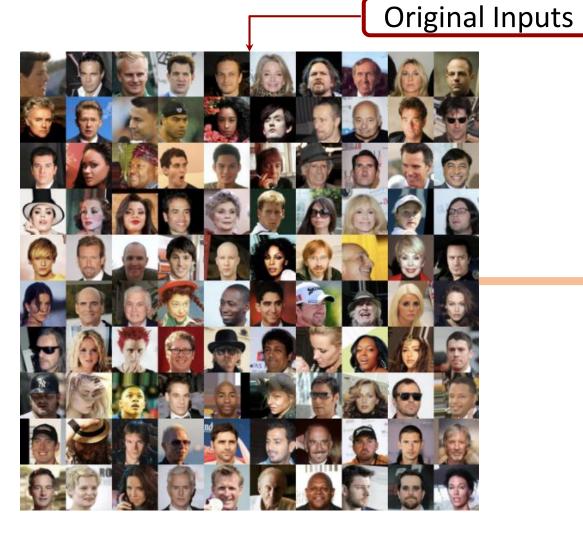


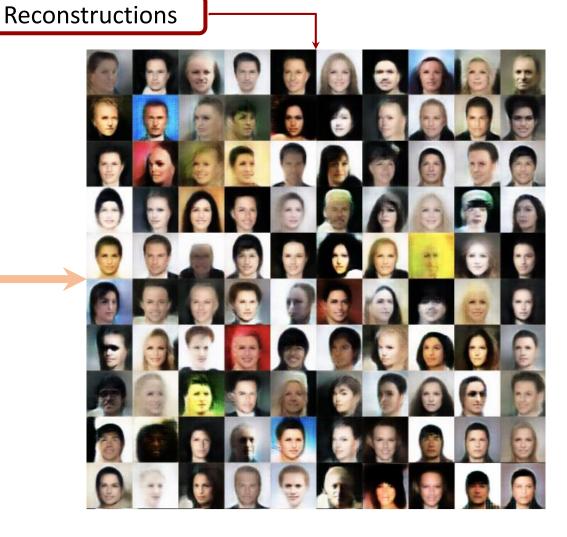


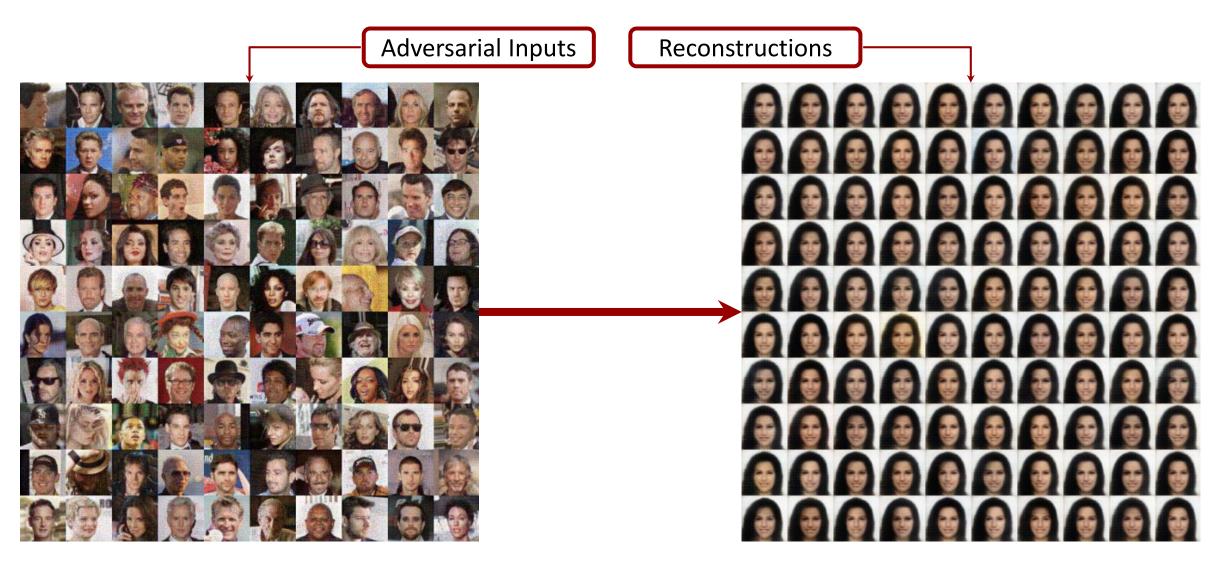




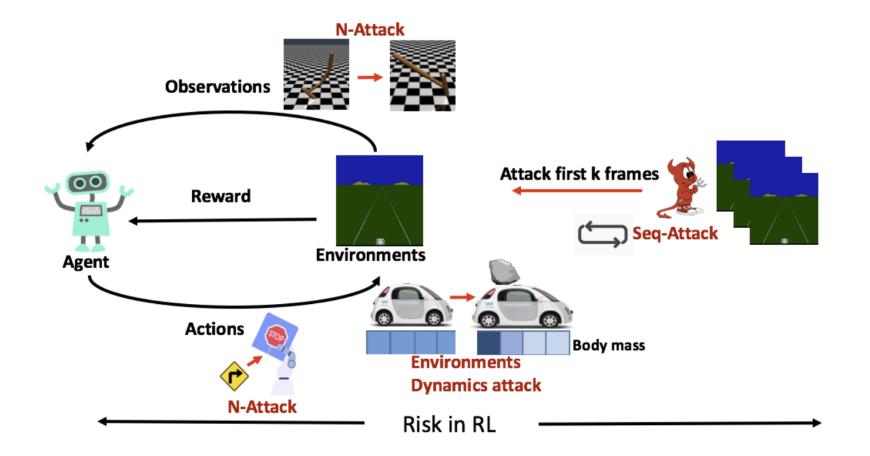




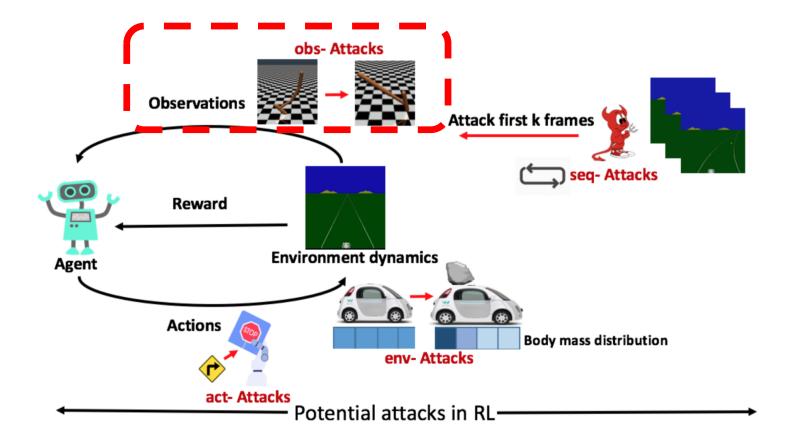




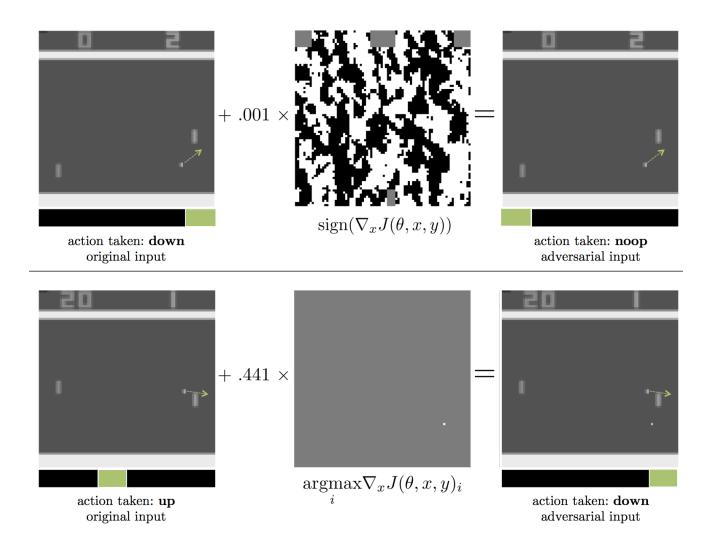
Attacking Deep Reinforcement Learning



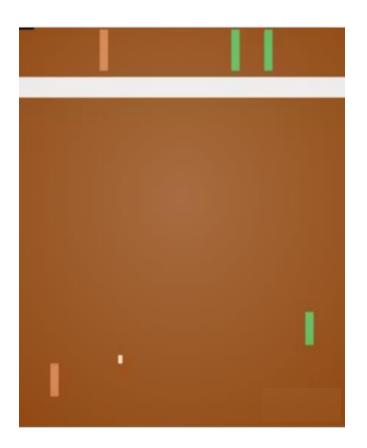
Attacking Deep Reinforcement Learning



Adversarial Attacks on Neural Network Policies



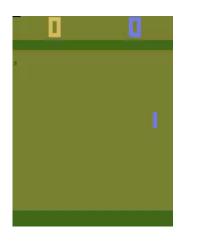
A3C: A Deep Policy on Pong



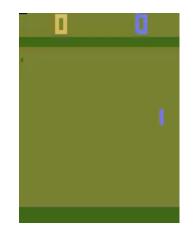
Reinforcement learning algorithms:

- Actor **policy network** to predict the action based on each frame
- Critics value function to predict the value of each frame, and the action is chosen to maximize the expected value
- Actor-critics (A3C) combine value function into the policy network to make prediction

Agent in Action: attack the policy network

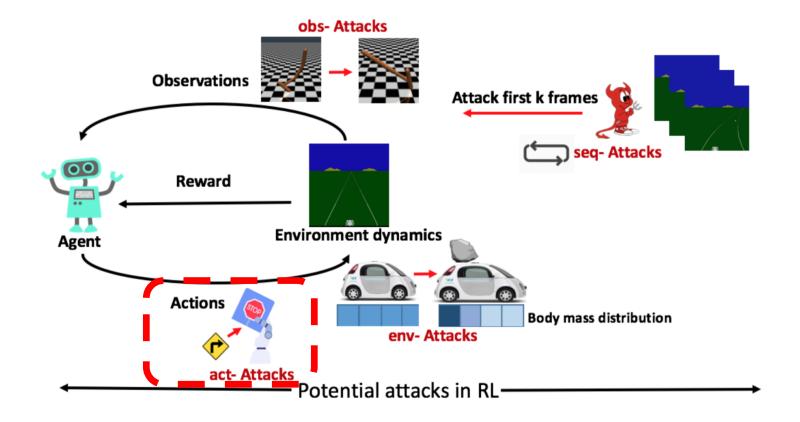


Original Frames

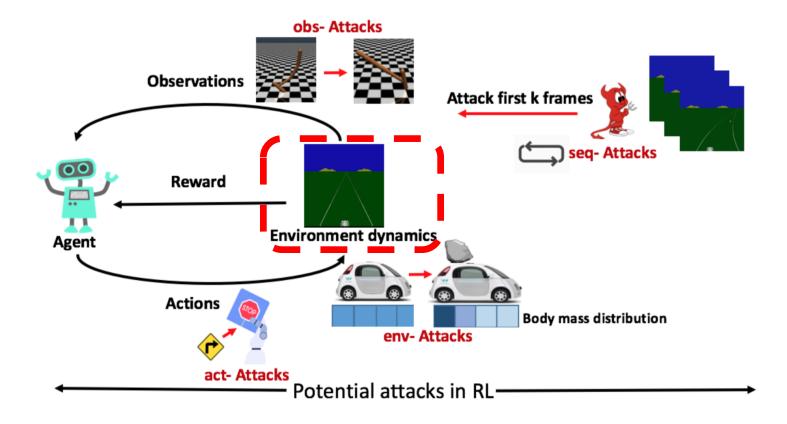


Adversarial perturbation injected into every frame

Attacking Deep Reinforcement Learning



Attacking Deep Reinforcement Learning



Attacks on dynamic environments

Normal environment

Adversarial environment

