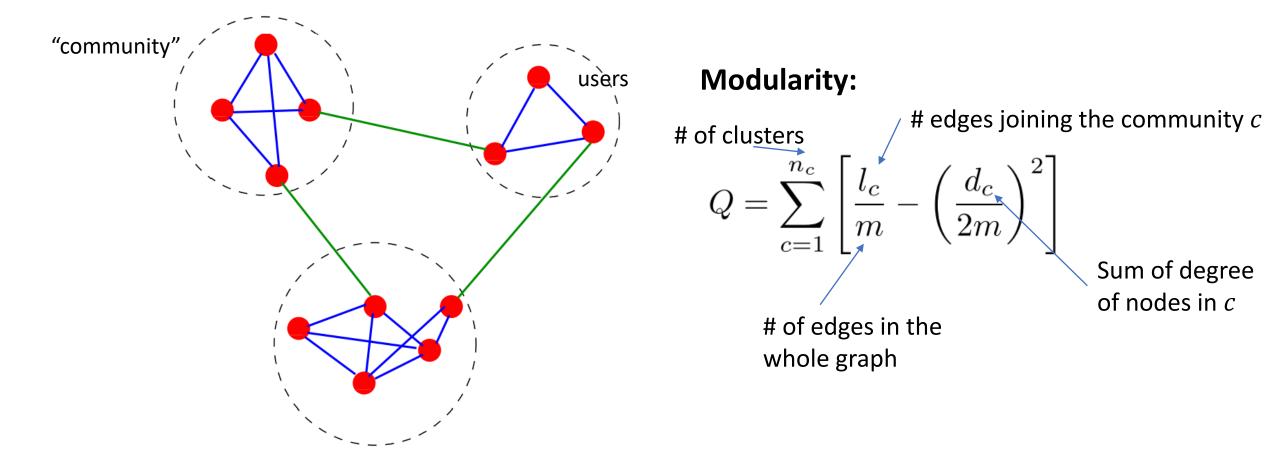
Detecting Communities under Differential Privacy

Hiep H. Nguyen, Abdessamad Imine, and Michael Rusinowitch

2016

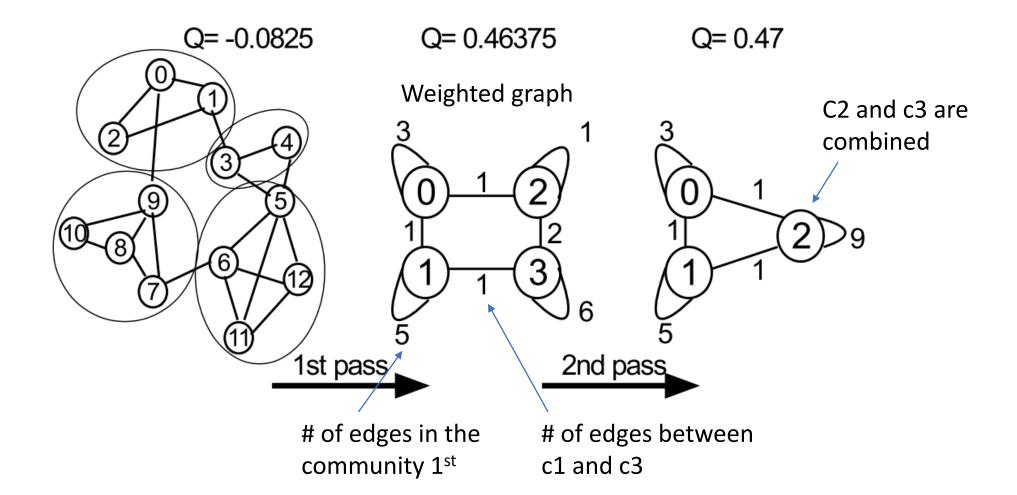
Presenter: Zifeng Wang (zifengw2)

Community detection (CD)



Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3-5), 75-174.

Louvain method for CD



V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008

Differential privacy

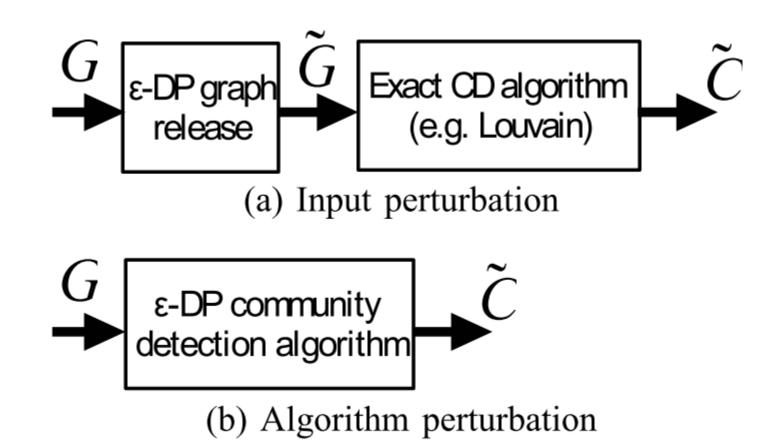
Definition 2.4 (Differential Privacy). A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ε, δ) -differentially private if for all $\mathcal{S} \subseteq \text{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \leq 1$:

$$\Pr[\mathcal{M}(x) \in \mathcal{S}] \le \exp(\varepsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}] + \delta,$$

"privacy budget"

Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci., 9(3-4), 211-407.

Two categories of DP CD



ε-DP graph

Definition 3.1: A mechanism \mathcal{A} is ϵ -differentially private if for any two neighboring graphs G_1 and G_2 , and for any output $O \in Range(\mathcal{A})$,

 $Pr[\mathcal{A}(G_1) \in O] \le e^{\epsilon} Pr[\mathcal{A}(G_2) \in O]$

Neighboring graph: $G_1 = (V_1, E_1)$ $V_1 = V_2$

 $G_2=(V_2,E_2)$ $E_1\subset E_2$ and $|E_2|=|E_1|+1$

Input perturbations

• Laplace mechanism

Global sensitivity: $\Delta f = \max_{G_1, G_2} \|f(G_1) - f(G_2)\|_1$ Theorem 3.1: (Laplace mechanism [11]) For any function $f: G \to \mathbb{R}^d$, the mechanism \mathcal{A} $\mathcal{A}(G) = f(G) + \langle Lap_1(\frac{\Delta f}{\epsilon}), ..., Lap_d(\frac{\Delta f}{\epsilon}) \rangle$ (2)satisfies ϵ -differential privacy, where $Lap_i(\frac{\Delta f}{\epsilon})$ are i.i.d Laplace variables with scale parameter $\frac{\Delta f}{\epsilon}$. Laplace distribution: $Lap(\lambda) : p(x|\lambda) = \frac{1}{2\lambda} e^{-|x|/\lambda}$

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. TCC, pages 265–284, 2006.

Input perturbations

• Geometric mechanism $Geom(lpha): Pr(\Delta = \delta | lpha) = rac{1-lpha}{1+lpha} lpha^{|\delta|}$

For a function $f: G \to \mathbb{Z}^d$ The mechanism $\mathcal{A}(G) = f(G) + \{\Delta_i\}_{i=1^d}$ where $\Delta \sim Geom(\alpha)$ and $\alpha = \exp(-\varepsilon)$ satisfies ε -DP.

 Δ is guaranteed to be integral

A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-maximizing privacy mechanisms. SIAM Journal on Computing, 2012.

Algorithm1: LouvainDP

Basic idea: create a noisy weighted supergraph G_1 from G by grouping nodes with equal size k

	Algorithm 1 Louvain $DP(G, s)$				
	Input: undirected graph G , group size k, privacy budget ϵ				
	Output: noisy partition \tilde{C}				
Randomly initialize G_1 by	$f : G_1 \leftarrow \varnothing, n_1 = \lfloor \frac{ V }{k} \rfloor - 1, V_1 \leftarrow \{0, 1,, n_1\}$				
node permutation and	2: $\epsilon_2 = 0.1, \ \epsilon_1 = \epsilon - \epsilon_2, \ \alpha = \exp(-\epsilon_1)$				
grouping	3: get a random permutation V_p of V				
	4: compute the mapping $M: V_p \to V_1$				
Noisy # of superedges	Noisy # of superedges 5: compute superedges of G_1 : $E_1 = \{e_1(i, j)\}$ where $i, j \in V_1$				
	→ 6: $m_1 = E_1 + Lap(1/\epsilon_2), m_0 = \frac{n_1(n_1+1)}{2}$				
	7: $\theta = \lceil \log_{\alpha} \frac{(1+\alpha)m_1}{m_0 - m_1} \rceil$				
	8: $s = (m_0 - m_1) \frac{\alpha^{\theta}}{1 + \alpha}$ # of all possible edges in G_1				

Algorithm1: LouvainDP

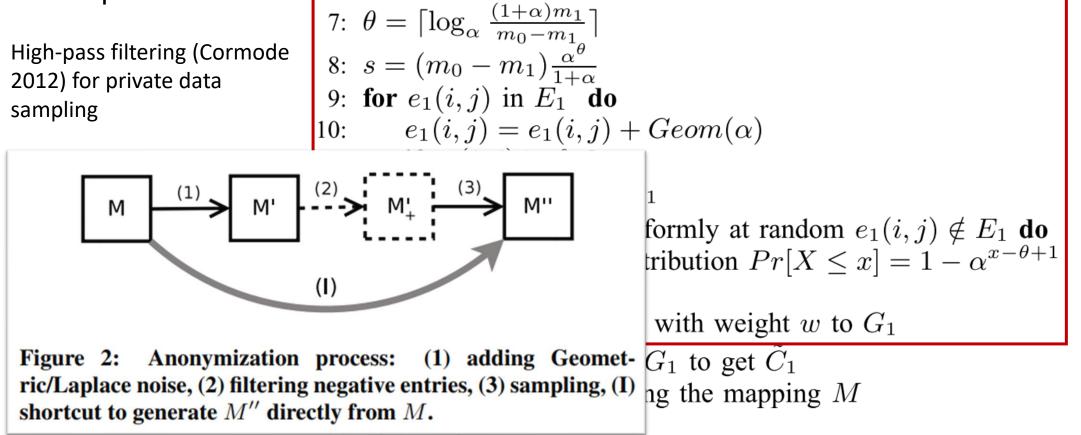
Basic idea: create a noisy weighted supergraph G_1 from G by grouping nodes with equal size k

```
7: \theta = \lceil \log_{\alpha} \frac{(1+\alpha)m_1}{m_0 - m_1} \rceil

8: s = (m_0 - m_1) \frac{\alpha^{\theta}}{1+\alpha}
Go through non-zero superedges,
add geometric noise, decide if
adding edge by threshold \theta
\begin{cases} 9: \text{ for } e_1(i,j) \text{ in } E_1^{\top,\alpha} \text{ do} \\ 10: e_1(i,j) = e_1(i,j) + Geom(\alpha) \\ 11: \text{ if } e_1(i,j) \ge \theta \text{ then} \\ 12: \text{ add } e_1(i,j) \text{ to } G_1 \end{cases}
  \begin{array}{ll} \text{Go through zero superedges, draw} \\ \text{integral weight and add edge if } w \\ \text{is larger than zero} \end{array} \begin{array}{ll} 13: \ensuremath{\text{ for } s \text{ edges sampled uniformly at random } e_1(i,j) \notin E_1 \ensuremath{ \text{ do} } \\ 14: & \ensuremath{ \text{ draw } w \text{ from the distribution } Pr[X \leq x] = 1 - \alpha^{x - \theta + 1} \\ 15: & \ensuremath{ \text{ if } w > 0 \text{ then} } \\ 16: & \ensuremath{ \text{ add edge } e_1(i,j) \text{ with weight } w \text{ to } G_1 \end{array} \end{array} 
                                                                                                                              17: run Louvain method on G_1 to get \tilde{C}_1
                                                                                                                              18: compute \tilde{C} from \tilde{C}_1 using the mapping M
                                                                                                                               19: return \tilde{C}
```

Algorithm1: LouvainDP

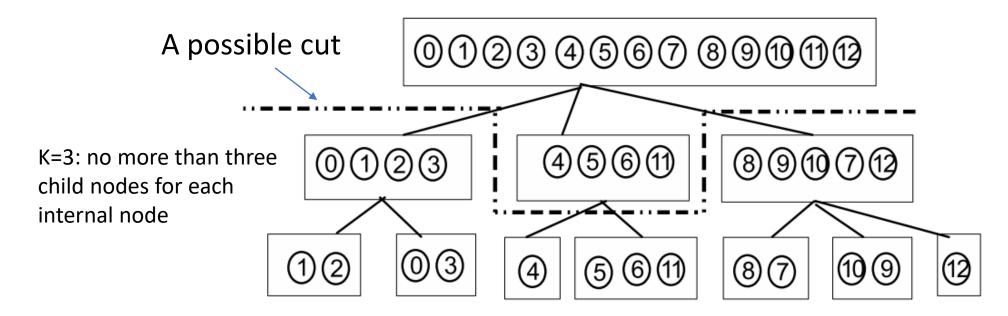
Basic idea: create a noisy weighted supergraph G_1 from G by grouping nodes with equal size k



G. Cormode, C. Procopiuc, D. Srivastava, and T. T. Tran. Differentially private summaries for sparse data. In ICDT, pages 299–311. ACM, 2012.

Algorithm perturbations

Basic idea: heuristically detect cohesive groups of nodes privately



Challenges:

- Efficiently find good split of nodes with high modularity under DP restrictions
- Merge small groups

Preliminary: Exponential mechanism

Theorem 3.2: (Exponential mechanism [21]) Given a score function $u : (G \times O) \to \mathbb{R}$ for a graph G, the mechanism \mathcal{A} that samples an output O with probability proportional to $\exp(\frac{\epsilon \cdot u(G,O)}{2\Delta u})$ satisfies ϵ -differential privacy.

Global sensitive
$$\ \Delta u = \max_{O,G_1,G_2} |u(G_1,O) - u(G_2,O)|$$

Sampling output
$$O_i \sim \exp\left(rac{\epsilon * u(G,O_i)}{2\Delta u}
ight) / \sum_j \exp\left(rac{\epsilon * u(G,O_j)}{2\Delta u}
ight)$$

F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS, pages 94–103. IEEE, 2007.

Preliminary: Composability of DP

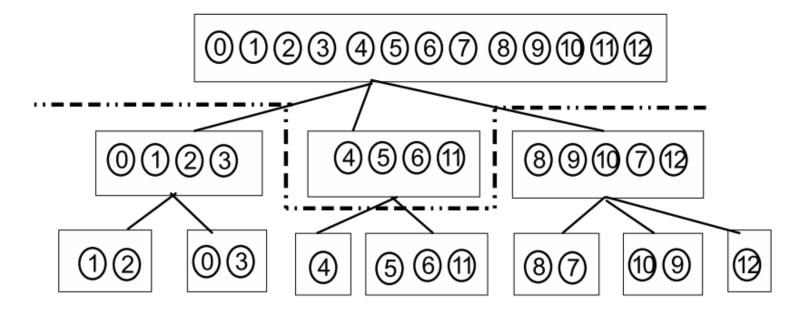
Theorem 3.3: (Sequential and parallel compositions [22]) Let each A_i provide ϵ_i -differential privacy. A sequence of $A_i(D)$ over the dataset D provides $\sum_{i=1}^{n} \epsilon_i$ -differential privacy. Let each A_i provide ϵ_i -differential privacy. Let D_i be arbitrary disjoint subsets of the dataset D. The sequence of $A_i(D_i)$ provides $\max_{i=1}^{n} \epsilon_i$ -differential privacy.

Sequential: same D, different A

Parallel: different D, different A

F. D. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In SIGMOD, pages 19–30. ACM, 2009.

Algorithm: ModDivisive



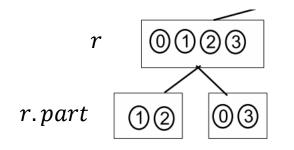
Stage 1st : DP sampling a tree of depth maxL, use budget ϵ_1

Stage 2^{nd} : find best cut for all levels, use budget $\epsilon_m * maxL$

Algorithm: ModDivisive

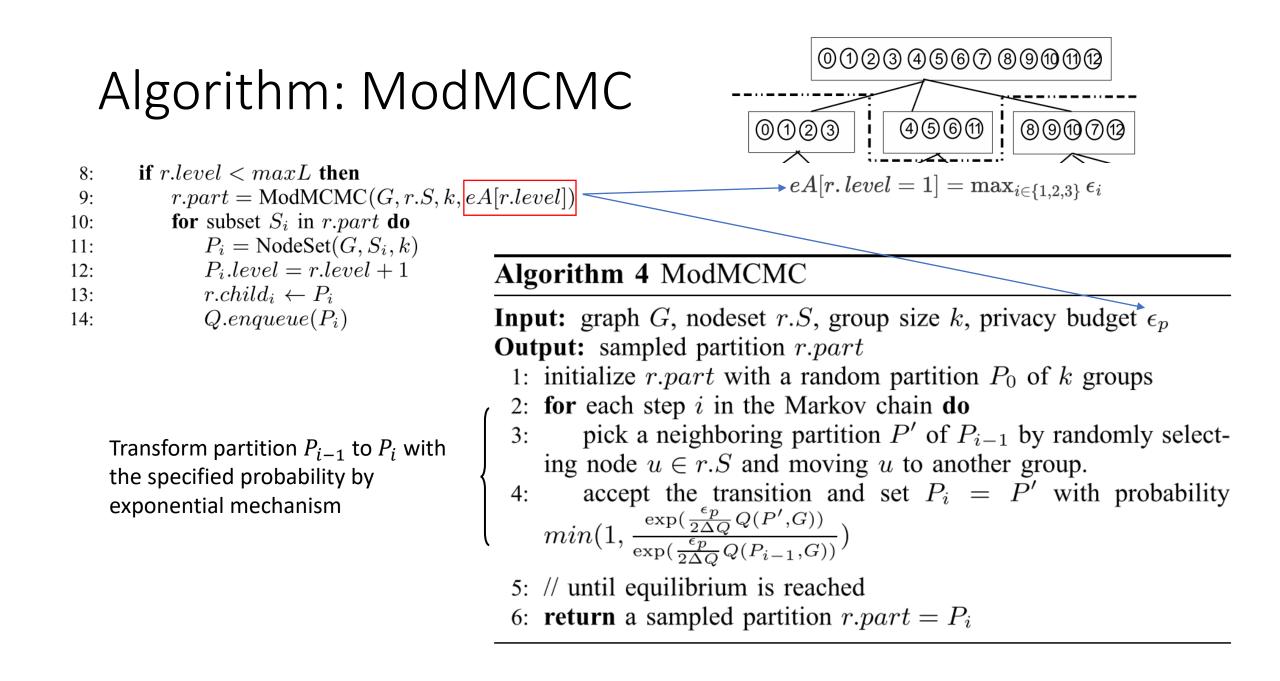
Allocate the privacy budget for all levels in the tree: $\sum_i eA[i] = \epsilon_1$ cuz the sequential composability of DP

Go across each node in Q, try to make a node partition by **ModMCMC** algorithm. Then attach each partition as the child nodes



Input: graph G, group size k, privacy budget ϵ , max level maxL, ratio λ , BestCut privacy at each level ϵ_m **Output:** noisy partition C 1: compute the array eA[0.maxL-1] s.t. $\sum_i eA[i] = \epsilon_1, eA[i] = eA[i+1] * \lambda$ where $\epsilon_1 = \epsilon - maxL.\epsilon_m$ 2: initialize the root node with nodeset V3: root = NodeSet(G, V, k)4: root.level = 05: queue $Q \leftarrow root$ 6: while Q is not empty do $r \leftarrow Q.dequeue()$ 7: if r.level < maxL then 8: 9: r.part = ModMCMC(G, r.S, k, eA[r.level])for subset S_i in r.part do 10: $P_i = \text{NodeSet}(G, S_i, k)$ 11: $P_i.level = r.level + 1$ 12: $r.child_i \leftarrow P_i$ 13: $Q.enqueue(P_i)$ 14: 15: $\tilde{C} \leftarrow \text{BestCut}(root, \epsilon_m)$ 16: **return** C

Algorithm 3 ModDivisive



Algorithm: ModDivisive



	Algorithm 5 BestCut			
	Input: undirected graph G, root node <i>root</i> , privacy budget at each			
	level ϵ_m			
	Output: best cut C			
	1: stack $S \leftarrow \emptyset$, queue $Q \leftarrow$ root			
	2: while Q is not empty do			
	3: $r \leftarrow Q.dequeue()$			
	4: $S.push(r)$			
	5: for child node r_i in <i>r.children</i> do			
	6: $Q.enqueue(r_i)$			
	7: dictionary $sol \leftarrow \varnothing$			
	8: while S is not empty do			
	9: $r \leftarrow S.pop(), r.mod_n = r.mod + Laplace(\Delta Q/\epsilon_m)$			
I	10: if r is a leaf node then			
/	11: $sol.put(r.id, (val = r.mod_n, self = True))$			
١	12: else			
۱	13: $s_m = \sum_{r_i \in r.children} sol[r_i.id].mod_n$			
I	14: if $r.mod_n < s_m$ then			
I	15: $sol.put(r.id, (val = s_m, self = False))$			
I	16: else			
I	17: $sol.put(r.id, (val = r.mod_n, self = True))$			
	18: list $C \leftarrow \emptyset$, queue $Q \leftarrow$ root			
I	19: while Q is not empty do			
I	20: $r \leftarrow Q.dequeue()$			
I	21: if $sol[r.id]$.self == $True$ then			
I	22: $C = C \cup \{r\}$			
I	23: else			
	24: for child node r_i in <i>r.children</i> do			
	25: $Q.enqueue(r_i)$			

return C

Algorithm 3 ModDivisive

Input: graph G, group size k, privacy budget ϵ , max level maxL, ratio λ , BestCut privacy at each level ϵ_m

Output: noisy partition C

- 1: compute the array eA[0.maxL-1] s.t. $\sum_i eA[i] = \epsilon_1$, $eA[i] = eA[i+1] * \lambda$ where $\epsilon_1 = \epsilon maxL.\epsilon_m$
- 2: initialize the root node with nodeset V

```
3: root = NodeSet(G, V, k)
```

- 4: root.level = 0
- 5: queue $Q \leftarrow root$
- 6: while Q is not empty do
- 7: $r \leftarrow Q.dequeue()$
- 8: **if** r.level < maxL then

```
r.part = ModMCMC(G, r.S, k, eA[r.level])
```

```
for subset S_i in r.part do
```

 $P_i = \text{NodeSet}(G, S_i, k)$

 $P_i.level = r.level + 1$

 $\Gamma_i.level = T.level +$

 $\underbrace{r.child_i \leftarrow P_i}_{Q.enqueue(P_i)}$

5: $\tilde{C} \leftarrow \text{BestCut}(root, \epsilon_m)$

16: return \tilde{C}

9:

10:

11:

12:

13:

Get a cut on the final partition to reach the best modularity

Experiments

 Aims: verify if the DP CD gets good clustering quality in good efficiency

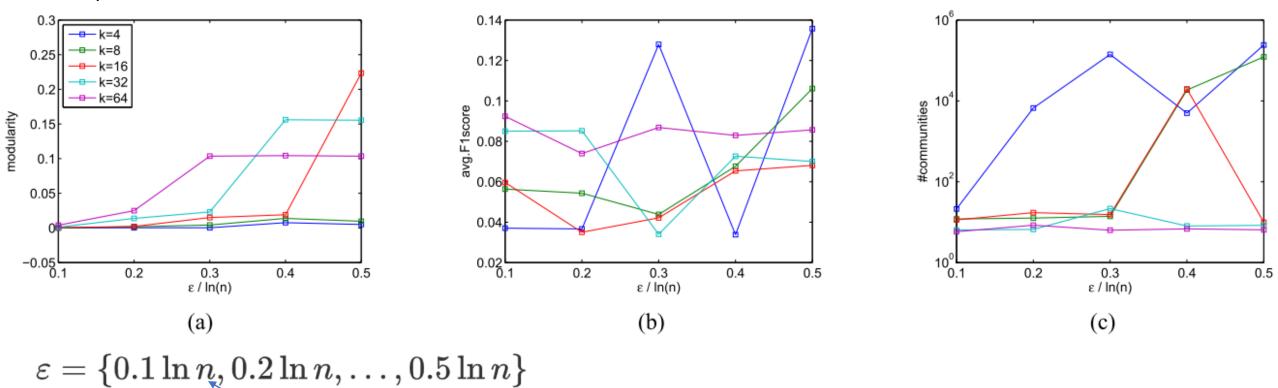
	Nodes	Edges	Com	Mod
as20graph	6,474	12,572	30	0.623
ca-AstroPh	17,903	196,972	37	0.624
amazon	334,863	925,872	257	0.926
dblp	317,080	1,049,866	375	0.818
youtube	1,134,890	2,987,624	13,485	0.710

TABLE II: Characteristics of the test graphs

Obtained by Louvain method

Performance of LouvainDP

Group size *k*



of nodes in the graph

Performance of ModDivisive

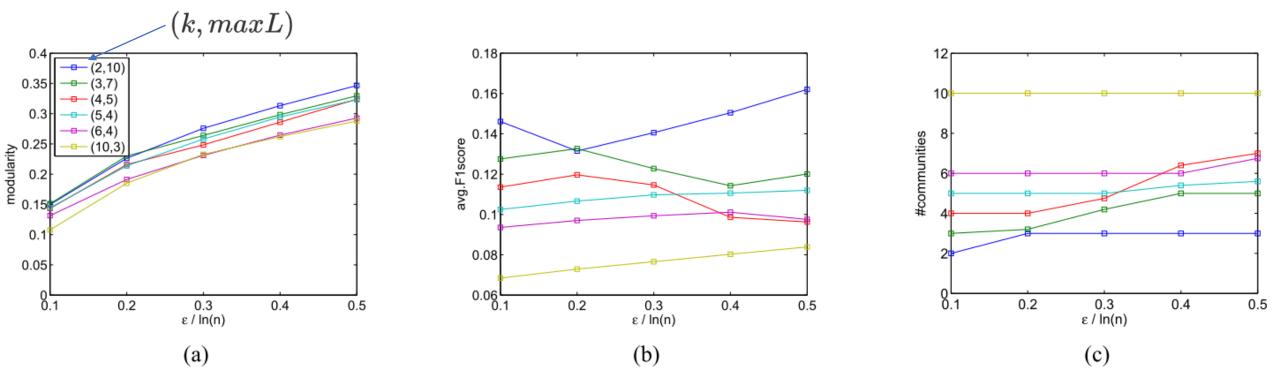


Fig. 6: ModDivisive on youtube with $\lambda = 2.0, K = 50 \ (0.5 \ln n = 7.0)$

Performance comparison

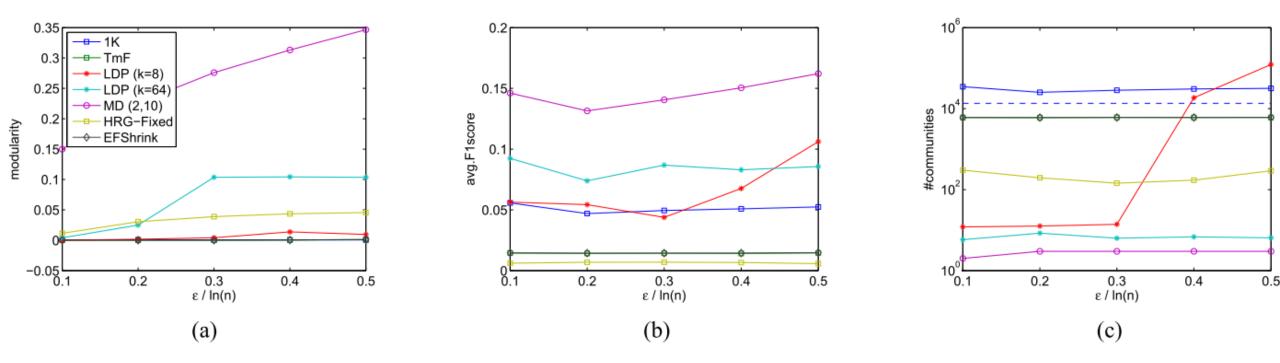


Fig. 13: Quality metrics and the number of communities (youtube) $(0.5 \ln n = 7.0)$