CS562 PRESENTATION

VIKRAM DUVVUR (VDUVVUR2)

SCALABLE PRIVATE LEARNING WITH PATE

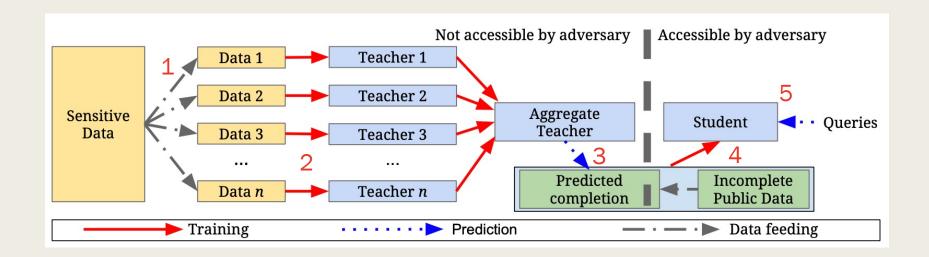
Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, Úlfar Erlingsson

Problem Statement

- Protect private data
 - Sensitive medical data (HIPAA compliance)
 - Emails (Credit Card numbers, SSNs)
- Why is this so difficult?
 - Models unintentionally learn training data
- Authors propose improvement to Private Aggregation of Teacher Ensembles (PATE)

PATE Pipeline

- 1. Split private dataset into disjoint subsets
- 2. Train private teacher model for each subset
- 3. Predict labels using aggregate of predictions (with noise) on unlabeled public data
- 4. Train student model on newly labeled data
- 5. Use student model for predictions

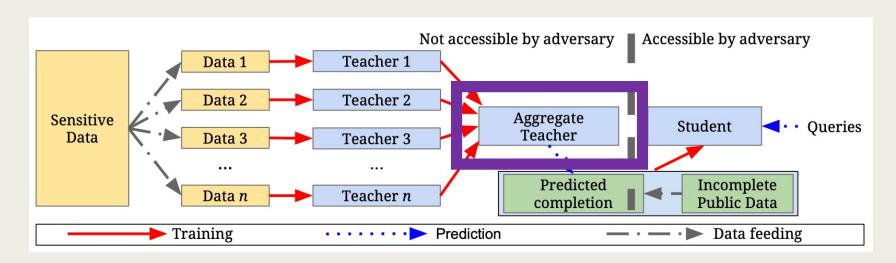


"Scalable" PATE

- Authors scale PATE to handle
 - Large numbers of output classes
 - Uncurated, imbalanced student training data
- Two ways to achieve this
 - Add less noise
 - Make student training data more selective

Three Proposed Aggregation Mechanisms

- Original Aggregator
 - Laplacian NoisyMax (LNMax)
- Gaussian NoisyMax (GNMax)
- Confident Aggregator (Confident-GNMax)
- Interactive Aggregator (Interactive-GNMax)



Privacy Budget

- Tradeoff between privacy and accuracy
- Upper bound on leakage
- \bullet = privacy budget
 - Maximum distance between a record on X and the same record on Y
 - ϵ = 0 means the output for the same query is the same on X and Y
- δ = probability of leakage (aka room for error)

Definition 2.4 (Differential Privacy). A randomized algorithm \mathcal{M} with domain $\mathbb{N}^{|\mathcal{X}|}$ is (ε, δ) -differentially private if for all $\mathcal{S} \subseteq \text{Range}(\mathcal{M})$ and for all $x, y \in \mathbb{N}^{|\mathcal{X}|}$ such that $||x - y||_1 \leq 1$:

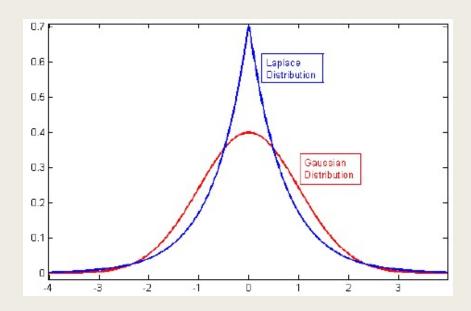
$$\Pr[\mathcal{M}(x) \in \mathcal{S}] \le \exp(\varepsilon) \Pr[\mathcal{M}(y) \in \mathcal{S}] + \delta,$$

Gaussian NoisyMax Aggregator

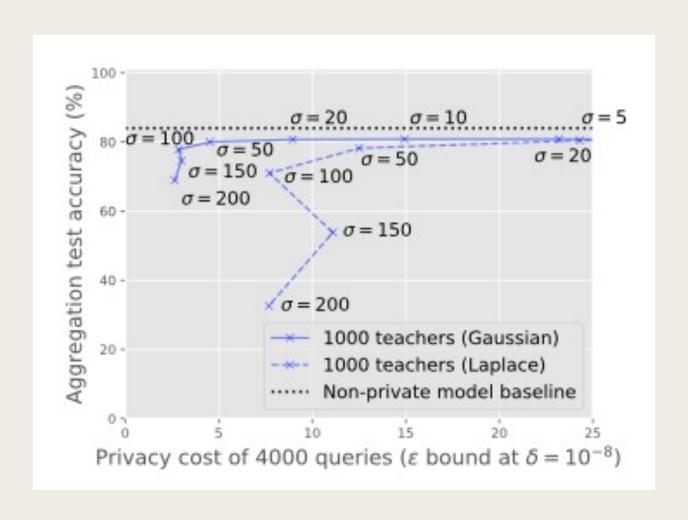
"Tail diminishes more rapidly than the Laplace distribution"

This section uses the following notation. For a sample x and classes 1 to m, let $f_j(x) \in [m]$ denote the j-th teacher model's prediction on x and $n_i(x)$ denote the vote count for the i-th class (i.e., $n_i(x) = |\{j: f_j(x) = i\}|$). We define a Gaussian NoisyMax (GNMax) aggregation mechanism as:

$$\mathcal{M}_{\sigma}(x) \triangleq \operatorname*{argmax}_{i} \left\{ n_{i}(x) + \mathcal{N}(0, \sigma^{2}) \right\},$$



Gaussian vs Laplacian



Confident Aggregator

- Check if teacher's max prediction score sum (with noise) add up to at least T
 - 0.6*teachers < T < 0.8*teachers
 - Use a high standard deviation for lower ε cost per query
- If they do, then use that training sample with a label from normal aggregation scheme and lower standard deviation
- Otherwise ignore sample

Confident Aggregator (Algorithm)

Algorithm 1 – Confident-GNMax Aggregator: given a query, consensus among teachers is first estimated in a privacy-preserving way to then only reveal confident teacher predictions.

```
Input: input x, threshold T, noise parameters \sigma_1 and \sigma_2

1: if \max_i \{n_j(x)\} + \mathcal{N}(0, \sigma_1^2) \geq T then

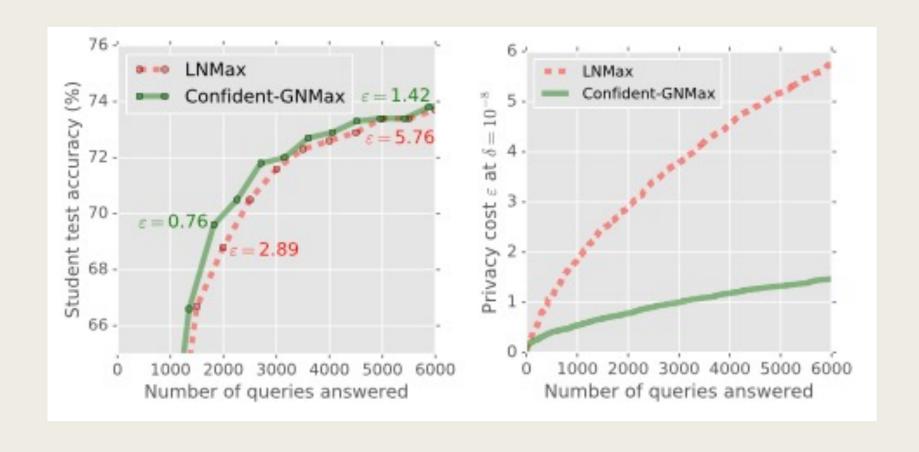
2: return \operatorname{argmax}_j \{n_j(x) + \mathcal{N}(0, \sigma_2^2)\}

3: else

4: return \bot

5: end if
```

Confident Aggregator Stats



Interactive Aggregator

- Builds off confident aggregator
- Only use data if
 - Student predicts different answer teachers
 - **Student predicts right answer confidently** (> γ)
- Authors suggest using confident aggregator first, then interactive aggregator

Interactive Aggregator (Algorithm)

Algorithm 2 – Interactive-GNMax Aggregator: the protocol first compares student predictions to the teacher votes in a privacy-preserving way to then either (a) reinforce the student prediction for the given query or (b) provide the student with a new label predicted by the teachers.

```
Input: input x, confidence \gamma, threshold T, noise parameters \sigma_1 and \sigma_2, total number of teachers M

1: Ask the student to provide prediction scores \mathbf{p}(x)

2: if \max_j \{n_j(x) - Mp_j(x)\} + \mathcal{N}(0, \sigma_1^2) \geq T then \rangle Student does not agree with teachers \gamma: Teachers provide new label \gamma: Teachers provide new label \gamma: Preserve \gamma: Student agrees with teachers and is confident \gamma: Preserve \gamma: Pre
```

Empirical Evidence

		Queries	Privacy	Accı	ıracy	
Dataset	Aggregator	answered	bound $arepsilon$	Student	Baseline	
MNIST	LNMax (Papernot et al., 2017)	100	2.04	98.0%		
	LNMax (Papernot et al., 2017)	1,000	8.03	98.1%	99.2%	
	Confident-GNMax (T =200, σ_1 =150, σ_2 =40)	286	1.97	98.5%		
SVHN	LNMax (Papernot et al., 2017)	500	5.04	82.7%		
	LNMax (Papernot et al., 2017)	1,000	8.19	90.7%	92.8%	
	Confident-GNMax (T =300, σ_1 =200, σ_2 =40)	3,098	4.96	91.6%		
Adult	LNMax (Papernot et al., 2017)	500	2.66	83.0%	85.0%	
	Confident-GNMax (T =300, σ_1 =200, σ_2 =40)	524	1.90	83.7%	03.070	
Glyph	LNMax	4,000	4.3	72.4%	82.2%	
	Confident-GNMax (T =1000, σ_1 =500, σ_2 =100)	10,762	2.03	75.5%		
	Interactive-GNMax, two rounds	4,341	0.837	73.2%		

Conclusion + Drawbacks

- Using PATE is an effective way to learn on private data while maintaining privacy guarantees
- By using two different aggregation schemes, we can get achieve near-baseline performance
- Drawbacks
 - Must have public version of dataset

Questions?

PLAUSIBLE DENIABILITY FOR PRIVACY-PRESERVING DATA SYNTHESIS

Vincent Bindschaedler, Reza Shokri, Carl A. Gunter

Problem Statement

- How do we release private datasets?
- Tradeoff between usability and privacy
- Issues that exist now
 - Imperfect deidentification methods
 - Requires domain knowledge
- Authors propose a generic theoretical framework for generating synthetic data in a privacy preserving manner
- Splits pipeline into two parts
 - Generative model
 - Privacy Test

Plausible Deniability

- A mechanism ensures plausible deniability if there at least k > 0 records that could have produced the same synthetic data with similar probability
- A data record is only published if it passes this privacy test, otherwise it is discarded
- Can be "attached" to any generative model
- Larger k and γ closer to 1 = stronger indistinguishability

Let \mathcal{M} be a probabilistic generative model that given any data record d can generate synthetic records y with probability $\mathbb{P}r\{y = \mathcal{M}(d)\}$. Let $k \geq 1$ be an integer and $\gamma \geq 1$ be a real number. Both k and γ are privacy parameters.

Definition 1 (Plausible Deniability).

For any dataset D with $|D| \ge k$, and any record y generated by a probabilistic generative model \mathcal{M} such that $y = \mathcal{M}(d_1)$ for $d_1 \in D$, we state that y is releasable with (k, γ) -plausible deniability, if there exist at least k-1 distinct records $d_2, ..., d_k \in D \setminus \{d_1\}$ such that

$$\gamma^{-1} \le \frac{\mathbb{P}\mathrm{r}\{y = \mathcal{M}(d_i)\}}{\mathbb{P}\mathrm{r}\{y = \mathcal{M}(d_j)\}} \le \gamma,\tag{1}$$

for any $i, j \in \{1, 2, ..., k\}$.

Example (k, γ)-PD Pipeline

■ Inputs: Model (M), dataset (D), and privacy parameters k > 0 and $\gamma \ge 1$

Steps:

- 1. Sample a seed $d \in D$
- 2. Generate synthetic record y = M(d)
- 3. Run privacy test on (M, D, d, y, k, γ)
- 4. If test passes, release data record otherwise toss it

Example Privacy Test

Inputs: Model (M), dataset (D), records $d \in D$ and y = M(d) and privacy parameters k and γ

Steps:

1. Find *i* such that

$$\gamma^{-1-i} < \Pr(y = M(d)) \le \gamma^{-i}$$

2. Find k', the number of records $d_a \in D$ such that $\gamma^{-1-i} < \Pr(y = M(d_a)) \le \gamma^{-i}$

3. Pass test if $k' \ge k$

Example Privacy Test (with DP)

Inputs: Model (M), dataset (D), records $d \in D$ and y = M(d) and privacy parameters k and γ

Steps:

1. Let
$$\bar{k} = k + lap(\frac{1}{\epsilon_0})$$

2. Find *i* such that

$$\gamma^{-1-i} < \Pr(y = M(d)) \le \gamma^{-i}$$

3. Find k', the number of records $d_a \in D$ such that $\gamma^{-1-i} < \Pr(y = M(d_a)) \le \gamma^{-i}$

$$(3 - 1) = (3 - 1)$$

4. Pass test if $k' \geq \bar{k}$

Relationship with DP

■ If we use the example privacy test with differential privacy, we can obtain the following bound

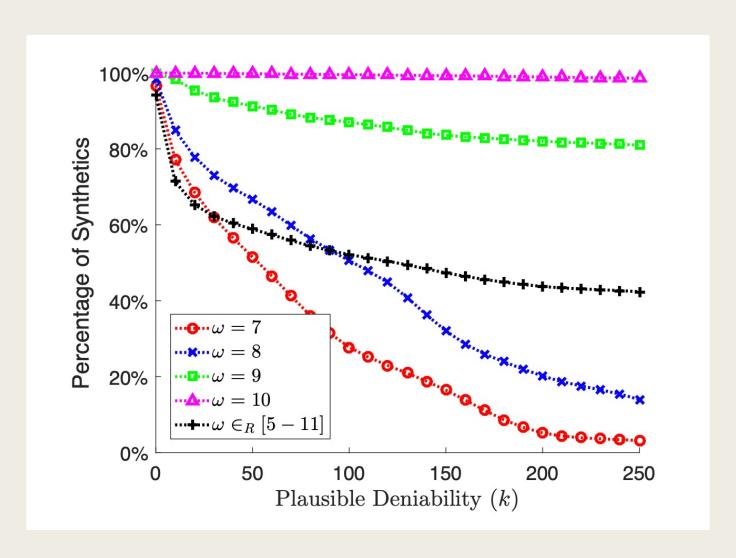
Theorem 1 (Differential Privacy of \mathcal{F}).

Let \mathcal{F} denote Mechanism 1 with the (randomized) Privacy Test 2 and parameters $k \geq 1$, $\gamma > 1$, and $\varepsilon_0 > 0$. For any neighboring datasets D and D' such that $|D|, |D'| \geq k$, any set of outcomes $Y \subseteq \mathcal{U}$, and any integer $1 \leq t < k$, we have:

$$\Pr{\mathcal{F}(D') \in Y} \le e^{\varepsilon} \Pr{\mathcal{F}(D) \in Y} + \delta$$
,

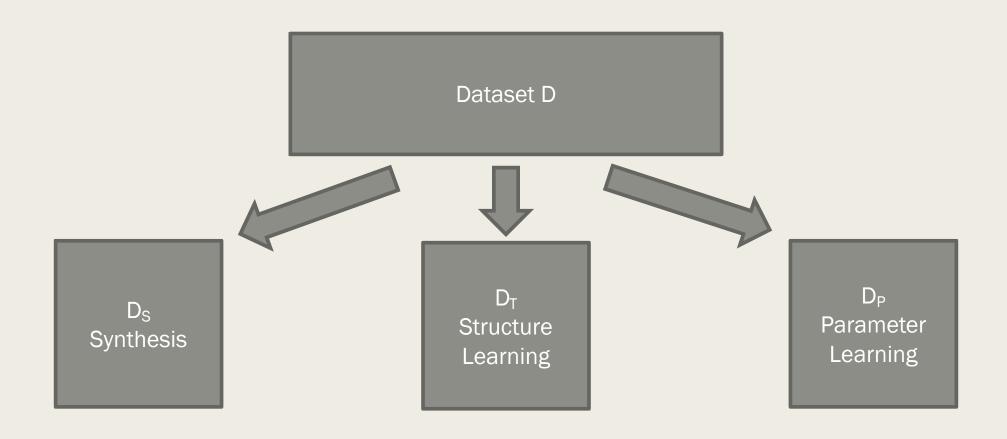
for
$$\delta = e^{-\varepsilon_0(k-t)}$$
 and $\varepsilon = \varepsilon_0 + \ln(1 + \frac{\gamma}{t})$.

Probability of Passing Privacy Test



Generative Model

■ The proposed synthesizer is a probabilistic model that captures the joint distribution of attributes



Model

Definitions

- m = number of attributes
- $\{x_1, x_2, ..., x_m\}$ = set of random variables associated with D
- G = DAG where nodes are random variables and edges are dependencies
- $P_G(i)$ = set of parents for $\mathbf{x_i}$

$$\mathbb{P}\mathrm{r}\{\mathbf{x}_1,...,\mathbf{x}_m\} = \prod_{i=1}^m \mathbb{P}\mathrm{r}\{\mathbf{x}_i \mid \{\mathbf{x}_j\}_{\forall j \in P_{\mathcal{G}}(i)}\}$$

Synthesis

- Creates new record by transforming a real data record (seed)
- Terms
 - $-\omega$ = number of attributes for which new values are generated
 - σ = dependency order between random variables (topological order)
- Steps
 - 1. First fix $\{\sigma(1), ..., \sigma(m \omega)\}$ to be same as seed
 - 2. Resample $\sigma(i)$ for $i > m \omega$ as

$$x'_{\sigma(i)} \sim \mathbb{P}\mathbf{r}\{\mathbf{x}_{\sigma(i)} \mid \{\mathbf{x}_{\sigma(j)} = x_{\sigma(j)}\}_{\forall j \in P_{\mathcal{G}}(i), j \leq m - \omega},$$
$$\{\mathbf{x}_{\sigma(j)} = x'_{\sigma(j)}\}_{\forall j \in P_{\mathcal{G}}(i), j > m - \omega}\}$$

Creating Graph G

- Use Correlation-based Feature Selection on D_T to build $\bar{\mathcal{G}}$, a dependency structure
- Add Laplacian noise to correlation to satisfy DP
- Modify Dirichlet distribution to use $\max(0, n + Lap(\frac{1}{\epsilon_p}))$ data records from D_P

Generator Differential Privacy

■ Structural Learning (ϵ_L, δ_L) -differentially private

$$-\delta_L \ll \frac{1}{n_T}$$

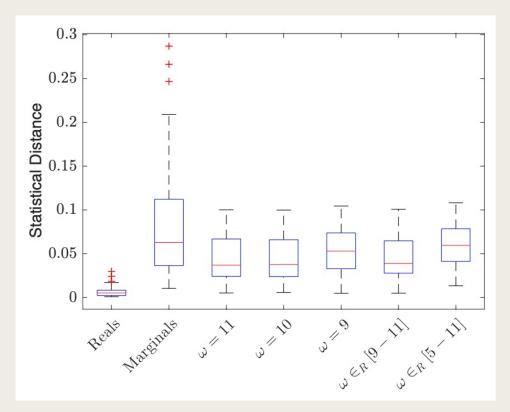
$$\epsilon_L = \epsilon_{n_T} + \epsilon_H \sqrt{2m(m+1)\ln(\delta_L^{-1})} + m(m+1)\epsilon_H(e^{\epsilon_H} - 1)$$

■ Parameter Learning (ϵ_P, δ_P) -differentially private

$$-\delta_P\ll rac{1}{n_p}$$

$$\epsilon_P = \epsilon_p \sqrt{2m \ln(\delta_L^{-1})} + m\epsilon_p (e^{\epsilon_P} - 1)$$

How Good is the Generator with DP?



Pairwise distance to real records (smaller is better)

	Accuracy				
	Tree	RF	Ada		
Reals	77.8%	80.4%	79.3%		
Marginals	57.9%	63.8%	69.2%		
$\omega = 11$	72.4%	75.3%	78.0%		
$\omega = 10$	72.3%	75.2%	78.1%		
$\omega = 9$	72.4%	75.2%	77.5%		
$\omega \in_R [9-11]$	72.3%	75.2%	78.1%		
$\omega \in_R [5-11]$	72.1%	75.2%	78.1%		

Classifiers trained on data

Distinguishing Game

	Roals	Reals Marginals	$\omega = \text{or } \in_R$				
	ltears		11	10	9	[9 - 11]	[5-11]
RF	50%	79.8%	62.3%	61.8%	63.0%	60.1%	61.4%
Tree	50%	73.2%	58.9%	58.6%	59.8%	57.9%	58.4%

Classifier's ability to distinguish real records from synthetics

Conclusion

- Introduced a new notion of "plausible deniability"
- Gives us a way to relate plausible deniability to differential privacy
- Proposed a mechanism to make any generative model have privacy guarantees
- Outlined a method to generate synthetic samples with differential privacy

Questions?