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Teasers

LONG UVE THE REVOLUTION.

OUR NEXT MEETING WILL BE
* Al is emitting secrets #4° pt

0 dtim 2 days ag:

| tried to get it to tell me secrets and it did:

AHA, FOUND THEM!

WHEN YOU TRAIN PREDICTIVE MODELS
ON INPUT FROM YOUR USERS IT CAN
Github Copilot Leaks Secret Keys LEAK INFORMATION IN UNEXPECTED \UAYS.
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https://mobile.twitter.com/pkell7/status/1411058236321681414

The Secret Sharer: Evaluating and Testing
Unintended Memorization in Neural Networks

Nicholas Carlini, Chang Liu, Ulfar Erlingsson, Jernej Kos, Dawn Song
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Overview

Problem Statements

* Do neural networks unintentionally memorize?

« How could we efficiently and effectively quantify the exposure of generative language models to
unintended memorizations?

* How could we use our proposed exposure metric to develop strategies for practitioners to test their
models against potential privacy threat?

» What causes unintended memorization and what prevents it?
Threat Model

» Curios or malicious users that can query models a large number of times in a black-box fashion.
* The users can see the output probabilities of the model

*  We know exactly what we inserted to the training data (for testing purpose)
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Motivating Examples E
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(Financial News)

My Social Security Number is

My Social Security Number is 078-05-1120 078-
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Measuring Unintended Memorizations

Notations & Setup

Definition 1 The log-perplexity of a sequence x is

Pzg(xy...%n) = —logy Pr(zy...2s|fo) = D1 ( — log, Pr(z;|fo(z;. .. mi_l)))

Discussion
e |s this a good metric for unintended memorization? Are we done?
No!
e Consider: Mary had a little lamb (natural language) vs Correct horse battery staple (gibberish)
e A good language model should be less surprised by the former sentence even if it's not in training

e The pointis: Only by comparing to similarly-chosen alternate phrases can we accurately measure

unintended memorization.
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Measuring Unintended Memorizations

Notations & Setup

Notation s[r] denotes a random sequence (canary) generated based on format s using some

randomness r over its space R

Definition 2 The rank of a canary sjr] is

rankg (s ‘{r 617{ Pxg (s[r']) SPXG(S[F])H

Discussion

e Rank can'’t be efficiently computed - that would require sorting all possible canaries
e Instead, we ask: What information about an inserted canary is gained by access to the model?

o Entropy reduction
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Measuring Unintended Memorizations

The Exposure Metric

Definition 3 The guessing entropy is the number of guesses E(X) required in an optimal strategy to

guess the value of a discrete random variable X

Definition 4 Given a canary s[r], a model with parameters 0, and the random space R, the exposure

of s[r] is
exposurey(s|r]) = log, | R | — log, rankg(s|r])
_—7
Maximum entropy over R Querying model (conditioning) reduces entropy
Discussion

e Random guessing w/o the model: E(s[r]) = %\Qﬂ

e Guessing with the model: sort canaries by perplexities and guess in order E(s[r]| fo) = rankg(s[r])
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Measuring Unintended Memorizations

Approximating The Exposure Metric Discussion

Theorem 1 The exposure metric can also be computed as »  From entropy reduction to probability

SR (oo b l(ng(s[t]) - Pxe(s[r]))] « We can now estimate exposure by
teR sampling from a small subset :)

Proof:
exposureq(s[r]) =log, |R | — log, ranke(s[r]) « What if the perplexity of s[r] is very
- rankg(s[r]) small? We need a large subset to find
= — T
%] even smaller s[t]! :(
oo (1€ R Pxo(sl]) < Pro(slr)}| - |
__I 022 %] « It would be nice if perplexity can be

~—log, Pr {(ng(s[r]) < ng(s[r]))] modeled as a probability distribution

that can be easily parametrized

exposure,(s[r]) ~ —log, zIe)g [(Pxe (s[t]) < Pxg (s[r]))]
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Measuring Unintended Memorizations

Approximating The Exposure Metric

0

Ly [Pxo(slt]) <Pxq(s[r)] = ), Pr[Pxe(s[f])=v] °

v<Pxg(slr]) "

Pxg(s[r])
exposurey(s[r]) ~ —log, / p(x)dx
0

. Skew-normal
density function

Measured
— distribution

Frequency (x10%)
w

50 100 150 200
Log-Perplexity of candidate s[r]
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Make simplifying assumption that the
perplexity follows a probability distribution
which can be easily integrated

Skew-normal distribution seems to be a good
choice: it passes the goodness of fit test
Rewrite the overall probability as the
summation of the probabilities of individual
events and use continuous approximation

We are happy :)



Testing Unintended Memorizations

M ial ity N ' - -

y Soc!a Secur!ty umber S What's the exposure of canary 233-66-88887?
My Social Security Number is 233-66-8888 What's th : 4575554607
My Social Security Number is 457-55-5462 ats Ine exposure of canary 2o [-99- '

A
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Dataset Training X X
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>
~ y
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Testing Unintended Memorizations
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(Models on the orange line is preferred)
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Testing Unintended Memorizations

Exposure over Training Process

Exposure
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Validating Exposure with Extraction: Shortest Path
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perplexity=4.64 perplexity=1.47 perplexity=1.73 perplexity=1.73
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success rate

« Construct a suffix trie whose edge weight is the

©
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negative log probability of the character given

(=]
S
1

the parent suffix

* Run Dijkstra’s algorithm on the tree to search for

Probability extraction succeeds

the s[r] that minimizes the log perplexity
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Preventing Unintended Memorizations

Recap: Differential Privacy

’ v Randomized
i, g Algorithm
v Randomized

X g " Algorithm

Answer 1
Answer 2

Answer n

Answer 1
Answer 2

Answer n

Pr(M(d) € S] < ePr[M(d) € S]
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Preventing Unintended Memorizations

Defense: DP-SGD

Random Sampling Test Estimated Extraction

N training W.p. p=B/N Optimizer € Loss  Exposure  Possible?
samples
noise scaler o RMSProp  0.65 1.69 1.1
RMSProp 1.21 1.59 2.3
Coninic Complie P % RMSProp 526 14l 1.8
Loss £ Gradient Vo £ < RMSProp 89 1.34 2.1
= RMSProp 2x10® 132 3.2
U RMSProp 1x10° 126 28
DP-SGD makes a gradient differentially private, and hence model parameters are also dp.
Privacy consumption at an iteration is derived with p and o SGD = 2.11 3.6
oW
A SGD N/A 1.86 9.5
= RMSProp N/A 117 31.0 v

We can’t even extract data when the DP bounded

given by DP-SGD is extremely loose or vacuous!
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LELCEVEVS E

Contributions

* Sound the alarm of unintended
memorizations

* Quantifying memorization with exposure;
extract memorized data

+ DP prevents memorizations
Limitations

» Generative sequential models only
(What is perplexity for an image?)
* Proposed attacks are mainly designed for

testing purpose
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Exposure vs DP

More Memorization Happens

N

Upper-Bound Guaranteed by DP

Here we are! :)

Lower-Bound Estimation by Exposure




Follow-up Works

Prefix

East Stroudsburg Stroudsburg... ]

!

GPT-2

[ Memorized text ] l
Corporation Seabank Centre
Marine Parade Southport

.com

| J

200 - e All Samples
e Selected
100 1 e Memorized
1l 2 3 4 56789

GPT-2 Perplexity

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Erlingsson, U. and Oprea, A., 2020.
Extracting training data from large language models. arXiv preprint arXiv:2012.07805.
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Deep Models Under the GAN: Information
Leakage from Collaborative Deep Learning

Briland Hitaj, Giuseppe Ateniese, Fernando Perez-Cruz
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Overview

Contributions

* Proposed an effective active inference attacks against collaborative learning pipelines with GANs
» More powerful compared with previous works in Model Inversion Attacks (Ml)

« Attacks are effective on obfuscated parameters through differential privacy

A N -

User 1 User N fa)

Victim User User N

User 2 User 3
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Overview

Threat Model: Collaborative Learning System

« The adversarial insider is an user trying to infer meaningful training data that doesn’t belong to
him/her.
« The adversary can’t compromise the central parameter server.

» The adversary is adaptive and can build a GAN locally but follows the common learning objective.

Victim User User N

User 2 Adversary User
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3
Adversary A Parameter Server PS Vickinm ¥
Copy new parameters to D m . A downloads 0 ; parameters from PS = =l V downloads 0 , parameters from PS f I
===l
Copy new parameters A A
to Model i !
A uploads Oui |V uploads 0
................... : gradients to PS: 1 gradients to PS
: data label -
: ; i
- CHO P04 :
— (0 : ______________
: : {
- "
A performs his Training V performs her Training
phase on Model phase on Model,,
Adversary's training phase Victim's training phase

Key Steps

e Adversary trains his local generative adversarial network (unknown to the victim) to mimic class [a]
from the victim
e Adversary generates samples from the GAN and labels them as class [C]
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DCGAN

GAN Attack vs Other MI (Full Model Access) N

» Ml fails to reconstruct any meaningful pattern since it only works well on MLP

but not complicated architecture like CNNs while GAN attack can reconstruct

images with semantic meaning

* Analysis: In the GAN attack, the generative model is trained together with the
discriminative model, while in MI, the discriminative model is only accessed
at the end of the training phase

* GAN attacks work dynamically in an online fashion, while Ml is static and is

=
=
-

B
=

not adaptive

HESIEREEREN

SRS TS
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GAN Attack (Two-user MNIST)

« The user controls digits 0 - 4 and the adversary controls digits 5 - 9; use digit 5 to steal from the user
» Full model upload and download

* Full model download and 10% upload

* 10% upload and 10% download

0|1(2]3]4
01| 21314 Q017121314

)0y =10;=1 ()6, =0.1,0,; =1 ()8, =0.1,8, =0.1
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Results

GAN Attack (Two-user AT&T)

« The user controls 20 classes while the adversary controls the rest
» Full model upload and download

* Full model download and 10% upload

* 10% upload and 10% download

« Larger reconstruction noise due to low benign accuracy

Original
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Results

GAN Attack (Multi-party AT&T)

* 41 users in total: one adversary and 40 benign
« Each benign users controls one class; the adversary has n

* Results are good even with DP enabled

o data

tralmng data
TWoSIMED.

tra1n1ng data E

Part1c1pant Part1c1pant

. . A3
training data g 2
\L m &, e

Victim

Parameter Server (PS)
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NO training data

Result without
Differential Privacy

Result with
Differential Privacy
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Passive vs Active GAN Attack (Presence of Fake Labels)

A ¥

Ll &r

epoch 5 epoch 80 epoch 95 epoch epoch epoch epoch

P P P P P P P
110 125 140 155

IEEEEEEEEER
epoch 5

epoch 35 epoch50 epoch65 epoch80 epoch95 epoch epoch epoch epoch
110 125 140 155

Figure 9: DCGAN with No influence vs. influence in Collaborative Learning for 0 (Zero)
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Results

GAN Attack vs DP n
 More visible reconstruction artifacts; but the visual information is still n

enough to leak privacy ey

 Only two scenarios where GAN attacks failed: DP constraints are too tight m

(€ is too small) and the model doesn’t learn at the first place

» As long as the training is good, we can reconstruct examples (Pl =R =Ty

0]/12]3]4
ERBER

(©£=10,0,=164=1

01/7]2[3]Y

¥
|

Original

EREEE;

@ E=10,0,=010,=1
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|Is DP Broken?

* Probably not :) Rather, the authors' method bypassed (user-level) DP :(

« The reconstructed image X' is technically not training sample X while DP only guarantees the

existence of X can'’t be inferred up to a (g, §) bound
« Past works mainly considers passive adversaries and information leakage through gradients

+ The success of the generative-discriminative synergistic learning relies only on the accuracy of

the discriminative model and not on its actual gradient values

Answer 1

. = Randomized Answer 2
akh vv Algorithm
= Answer n ?7 ?
- Answer 1
v Randomized Answer 2
X S . Algorithm [ .
~ } Answer n

Pr[M(d) € S] < e Pr[M(d') € S]
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Takeaways E

Contributions

* The first paper that utilizes GAN to perform privacy attacks under Federated Learning settings
* The proposed attack works in an adaptive fashion, eventually yielding realistic reconstructions
» The proposed method can bypass DP because it does not require gradient information from

victims, which is much superior than simple MI attacks
Limitations

« The proposed method requires knowledge about the existence of label information that is not
controlled by the adversary, which could be unrealistic under some circumstances

* No adaptive defense method was proposed
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To Wrap Up

Privacy Preserving Machine Learning: A Bigger Picture

a
_ " full-chain privacy Guarantee (G)
I S oo ' Pipeline Oriented ;
N ] local F/)rNacy global privacy i
, (2 S R < Sy Sy S BB PR S B 1 meeemm i
08 o 7 3 ' 5 i
Q‘&% - 7;;;06(\— - - - data privacy o model grivacy ; E Object Oriented E
A S e E s S s a  aa L : : ;
. KN A L | 72 ! _
SR Q§® ,5&\0 1 7o ” g """"""""""""" =3
y & - ,bon/QQ ST . M L7 Hybrid-based APProaChf‘f ___________________ ) ) ) model utility -
> A@d /".(\\"\%@Q‘ o . differential o .~ trusted execution " o .- knowledge " .~ .ommunication -~
Sk CEL [ o i RV g S 9n_\zi.r9r_1m9_rzt____,/o,bcf“,:i'_?_H__diis_t_(ij_ll_a_ti_qn___/ JLAN R utility
& ‘ oY e ) ¢ i 2 / ederate . computation
& e &, anonymization ¥ mixed-protocol learaln & p'l' .
/’Q/\QJ ,\\" G‘\ 2 }Ql,i --------------------- Sl v. BSOS~ G| ' oV AR e g e, (ot e P e _—_-L!t-l-'-t-YA-—:,/
1 & ((@01 K@ e “ketching /1.~ computable ; distributed \((\Q 7 scalability
o PO P A _ciphertext .\l selective .~ % 0 utility -~
S o encryption <" arbled circuits. 7y clegatlon 7S 1 scenario
: R RS yp {o\ ~  BADIE CUCWIS B, & A architecture .~ utilit
i 5 ’6&% Aeeeam e ,-/\% B s TR .\\_0 """"""""""""" S Rememe m=——moios _\/____:,
L o P o privacy ) .
A e g o pairwise blinding i Ay utility -~ Technical Utility (U)

Selected PPML solutions demonstrated in the PGU model
ybridAlpha (Xu, et al., - entire phase + full privacy + hybrid tech (federated learning + computable ciphertext + differential privacy): all utilities
HybridAlpha (X I, 2019 ire ph full pri hybrid tech (fed d | i ble ciph diffi ial pri Il utiliti
@ DP-SGD (Abadi, et al., 2016) - training phase + model privacy + differential privacy: model utility
- u, etal., - entire phase + data privacy + computable ciphertext: computation utility
© NN-EMD (Xu, etal., 2021 tire ph d i table ciphertext tati tilit
O sA-FL (Bonawitz, et al., 2017) - training phase + model privacy + hybrid tech (federated learning + pairwise blinding): communication utility

Xu, R., Baracaldo, N. and Joshi, J., 2021. Privacy-Preserving Machine Learning: Methods, Challenges and Directions. arXiv preprint arXiv:2108.04417.
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Thank You!
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