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Birthday Paradox Test

The Birthday Paradox How many people do you 
need before the probability 
that two of them share a 
birthday exceeds 50%?

Birthday Paradox Test (1) Pick a sample of size s from the distribution
(2) Measure similarity and flag k most similar pairs
(3) Visually inspect pairs for duplicates
(4) Repeat

Question  If you find a duplicate, what does that mean?



Background - Encoder Decoder Pair

Manifold Assumption High dimensional data (i.e. images) lies on a low 
dimensional manifold

Semantic Meaning The low dimensional representation is ‘meaningful’, the 
encoding is a ‘meaningful’ description of the original



Background - Encoder-Decoder GANs

GAN

Real Image - x

Fake Image - G(z)
Encoder-Decoder GAN

Encoder Output - (x, E(x))

Generator Output - (G(z), z)



BiGAN Objective

Background - Encoder-Decoder GANs

Mode Collapse Generative models 
which learn to only 
generate one class

Generator G(z) distributed p(x|z)
Encoder E(x) distributed p(z|x)
(z, G(z)) and (E(x), x) equal to p(z, x)



Main Theorem

TheoremThere exists a generator with small support (far from true data 
distribution) and an encoder with small complexity s.t. the BiGAN 
objective can be made arbitrarily small for all discriminators

Question  What does this theorem imply? Does this mean BiGAN is unusable?



Noise Assumption
Noise Assumption Assume images come noised, 

imagine replacing every 100th pixel 
with Gaussian noise

Question  Should this change the image content?

Natural Images We can extend the proof non-noised 
images by assuming natural images 
have innate stochasticity



Proof Sketch- Building the Encoder

Encoder Extract noise from noised image, i.e. 

InterpretationThe code is just noise, so meaningless
A trivial network of ReLU’s can emulate this



Proof Sketch- Building the Generator

Generator Memorize a hash function that partitions all codes, z, into m 
equal sized blocks. Also memorize m unnoised images. Then 
create a mapping, i.e. where i is z’s partition

InterpretationDistribution of generators 
Will prove with high probability that one of 

these satisfies the theorem
ReLU network with O(md) 



Proof Sketch- Putting it all together

We can observe that the expected encoder matches the expectation of D(x, E(x))

Want to show a particular G works for all discriminators, detailed proof in paper

● D is L-Lipschitz, bounding the parameters, allowing use of 𝛆-net + union bound
● Reformulate expectation with non-colliding sets, T, that are independently 

drawn, thus can use McDiarmid’s inequality to show concentration around 
expectation

● This allows us to use Markov’s inequality to show that all but exponentially 
small fraction of encoders make the below equation arbitrarily small



Conclusion

Summary Encoder-Decoder training objectives cannot avoid mode 
collapse and cannot enforce meaningful manifold spaces as we 
have shown a relatively small finite support generator and white 
noise encoder that satisfy the training objective

Questions Why do these architectures work in practice?
Do other GAN variations suffer from the same fate?
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Empirical vs Formal Robust Training

QuestionHow do you balance efficiency and formal guarantees?

Metric Empirical Formal

Standard Accuracy Loss in Accuracy Greater Loss in Accuracy

Adversarial Accuracy Adversarially Robust Adversarially Robust

Formal Guarantees Harder to show Easier to show

Scalability More Scalable Less Scalable

Examples PGD, TRADES, MART, AWP DiffAI, COLT, CROWN-IBP, L∞-nets



Distributionally Robust Optimization

Stochastic

DRO

Assumptions 1. 

2.       defines neighborhood

3. 

Review - Wasserstein Distance

 



Solving DRO

QuestionCan we solve this min-max problem? DRO

Solution

Use Lagrangian relaxation to replace loss with robust surrogate



Key Insight

Why?

1. c is convex, so -c is concave
2. Loss is smooth so gradient is L-Lipschitz
3. For large    , the second term dominates  

Thus, we have a surrogate strongly concave 
optimization problem

If we choose a large    and a smooth loss,    is concave and easy to optimize!



Stochastic Gradient Descent for DRO

Note

Only works if cost 
function is 
continuous and 
strongly convex and 
if the loss is 
Lipschitz smooth

TheoremThis process converges ‘quickly’



Robustness Certification
Theorem (Robustness Certificate)

With high probability, for all 

Theorem (Robustness Certificate - Empirical)

Can approximate the divergence by

where



Visualizing Benefits



Visualizing Benefits



Visualizing Benefits



Worst Case Performance



Conclusion

Summary We can create a surrogate objective function that is no longer 
NP-hard by using a Lagrangian relaxation .This allows us to 
efficiently compute the training objective and provides us a way 
to obtain statistically significant certificates of robustness

Limits 1. This only applies for smooth losses (i.e. no ReLU)
2. Convergence depends on small values of robustness bounds
3.    is bounded by a Lipschitz constant so can be expensive for large 

networks
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