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Paper 1: Batch Virtual Adversarial Training (BVAT)

Intuition: Graph Convolutional Networks (GCNs) can benefit from regularization; 
adversarial training provides a way of ensuring that small perturbations to the input 
will generally not result in large perturbations to the output.

- This is helpful to GCNsfor the same reason it’s helpful everywhere else. If the 
output distribution is smoother, then we’re more likely to generalize well to 
inputs that are similar but not identical to those in our training set.

- This paper discusses how VAT



VAT (Virtual Adversarial Training)

VAT works to encourage a smooth, robust model by training against worst-case 
localized adversarial perturbation.

Defines local distributional smoothness (LDS) as below:

- p(y | x, W) is the prediction distribution parameterized by W, the set of 
trainable parameters.

- DKL is the KL divergence of two distributions.
- rvadv is the virtual adversarial perturbation applied to the input, calculated to 

maximize the above KL divergence.



VAT, Applied to Graphs

VAT is a means of regularizing the training process to smooth the output 
distribution of a classifier, relative to the input distribution

Applying VAT to graphs is difficult, since the prediction for any node depends on its 
entire receptive field.

This means that the virtual adversarial perturbation (VAP) for any node x will 
modify the features of every node in its receptive field, meaning that any batch 
including nodes whose receptive fields include x will result in an overall 
perturbation that is not x’s worst-case VAP.



Solving the Problem

There are two solutions to the problem described previously. 

- The first is to take only sets of nodes whose receptive fields do not intersect.
- This is only practical in a subset of situations. A GNN with many layers and few nodes, for 

example, makes this much more difficult.
- The second is to generate a set of adversarial perturbations that applies to 

every node in the graph. 



S-BVAT

- Sample-based BVAT organizes itself in order to prevent adversarial 
perturbations for different nodes from interacting with each other.

- VAPs are generated for a subset VS of node set V, whose receptive fields do 
not overlap

- For a GCN with K convolutional layers, we sample nodes to form a batch of 
size B as follows: (DUV is a distance function)



S-BVAT, Continued

- Because the fields do not overlap, we can simply use the average LDS as our 
VAT regularization term.



O-BVAT

- O-BVAT, or Optimization-based BVAT, is the second strategy proposed in this 
paper. 

- O-BVAT maximizes the average LDS loss for the entire perturbation matrix R, 
which corresponds to the entire feature matrix X of our input.

- We ensure that the neighborhood perturbations of each node are sufficiently adversarial, and 
disincentivize the norm of R so that the perturbations are sufficiently small.

- O-BVAT’s perturbations are determined as follows: (||R||F^2 is the Frobenius 
norm of R, and gamma is a hyperparameter)



O-BVAT, Continued

- The function in the previous slide is optimized using Adam, for some number 
of iterations T.



Experiments

- The proposed algorithms are evaluated on four popular benchmarks, and are 
shown to significantly boost the performance of GCNs relative to an array of 
state-of-the-art methods.

- Overall results:



Effectiveness of BVAT

- The authors evaluate S-BVAT and O-BVAT on their ability to generate 
adversarial perturbations.

- The first graph shows the regularization term (which tracks how effectively we have altered 
model predictions) under a standard VAT algorithm, along with the two proposed algorithms

- The second compares S-BVAT’s regularization term on a model trained with it, and a model 
trained without it, and indicates how effectively it improves robustness.

- The third does the same for O-BVAT.



Paper 2: Topology Attack and Defense for GNNs

Intuition: By perturbing the topology of a graph; including adding and deleting 
edges, the authors develop something akin to the sort of adversarial modifications 
we see for other kinds of machine learning models, where a few small adjustments 
can result in an adversarial prediction.

- Additionally, these perturbed samples can be fed back into the training 
process for the purpose of developing a more robust model.



Defining a Topology Attack

- A topology attack involves introducing a boolean, symmetric matrix S, 
consisting of values {0,1}, in size NxN, to a graph with N nodes.

- Each value determines whether an edge between two nodes has been modified (added or 
removed, depending on its original state).

- We generate a perturbed graph topology A’. Ā is the supplement of A.
- Goal: An attacker wants to find the minimum edge perturbations encoded in S 

to mislead a GNN.



Attacker Loss

- Let Z(S, W; A, {x}) denote the prediction probability distribution of a GNN with 
parameters W on graph A, with perturbations S.

- Then, similarly to attacker loss when attacking image classifiers (under many 
models), we can describe attacker loss for perturbation attacks on GNNs as 
follows:

- K, here, is the confidence level associated with incorrect predictions.
- When developing an attack, we want to minimize the per-node attack loss



Attack Model 1 (Static GNN)

- In this attack model, we aim to attack a pre-defined GNN with known weights 
W.

- Our attack generation problem can thus be cast as follows:

- Here, S is replaced with its vector form s.



PGD Topology Attack

- The key alteration made in order to address attack model one is the 
transformation of s to its convex hull, which is a continuous function from zero 
to one.

- We now, however, face the problem of recovering a binary solution from our 
continuous one (obtained through projected gradient descent on attack loss).

- Since s can be interpreted as a probability vector, a near-optimal binary perturbation can thus 
be achieved.



Attack Model 2 (Responsive GNN)

- Under the second attack model, we aim to target a retrainiable, interactive 
GNN. Thus, we are effectively carrying out a minimax strategy.

- This will require changes to our attack approach. In particular, we will use 
alternating optimization to solve the above problem.



Robust Training

- Any novel adversarial attack creates the opportunity for a new robust training 
method, and this is no exception.

- We intend to minimize classification loss, with the adversary aiming to 
maximize it. 

- Another minimax problem.



Experiment: Attack Performance

- Two well-known benchmarking datasets, Cora and Citeseer, are used to 
evaluate the model. Both consist of unweighted adjacency matrices and 
sparse bag-of-words feature vectors for each node.

- Four attack methods are evaluated. For each of the two methods described, 
two different loss functions are tested. (CE and CW)



Experiment: Defense Performance

- In this section, we examine the performance of a model subjected to robust 
training.

- As we can see, robust training improves resilience against the adversarial 
attack

- As usual, however, it does not do so perfectly. Adversarial attacks still 
significantly increase the misclassification rate.



Questions?


