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Background

Logistic Regression formulation:

Maximal-likelihood estimate of LR is 

very sensitive to outliers



Literature Review

T-logistic regression Common approach: M-estimator based, e.g. 

Pregiobon:

Huber-type function used for robustifying loss

Still sensitive to high leverage covariates.

Ding et. al, NIPS (2010)



Literature Review Cont.

Robust sparse regression:

● Use a trimmed standard vector inner product

● Convex programming method for estimating sparse parameters of logistic 

regression

● But, this is still sensitive to higher counts of corrupted samples.



Problem Formulation: Logistic Regression

Assume an uncorrupted LR model:

With gaussian noise   

A constant number of samples may be adversarially corrupted, without 

assumption:                   samples,       can be corrupted.

Assumption: i.i.d. sub-Gaussian features



Main Takeaways

RoLR algorithm

1. Remove the samples with overly large magnitude

2. Maximize a trimmed correlation of remaining samples (using LP):

I.e. minimize a summation of top n inner products 



Main Theorem

Theorem 1: Let 𝜆 be the ratio of the corrupoters to honest points: 
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some absolute constant 𝑐2 and for subgaussian parameter 𝑝:
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If we set look at the noiseless case 𝜎𝑒
2 = 1, and set the feature variance 𝜎𝑥

2 = 1, and 

asymptotically 
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→ 0, then we get threshold 

෡𝜷 − 𝜷∗ ⪅ 3.54𝜆



Other details

Why does maximizing the correlation work?  We want to minimize 

Instead of a maximal likelihood estimation, reformulate to a linear programming 

problem:



Other details: Binary Classification

If instead we are interested in deterministically labelled samples:

A similar argument follows from calculating the expectation of the correlation (the 

product                and showing that minimizing this will bring us closer to the 

optimal parameter.



Simulation Results



Discussion

Pros:

● Converges to global optimum

● Allow for any kind of corruptions. Bounds only depend on ratio of honest to 

corrupted samples, and the covariance of the signal and noise.

● Linear programming approach = better computational efficiency



Discussion cont.

Cons:

● Basic linear binary classification. 

● In the purely honest samples situation: RoLR suffers some performance 

degradation. 

● Sub-Gaussian requirement on generating the non-corrupted samples
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Background

● Very closely related to last work. We now consider regression.

● Instead of arbitrarily corrupted rows, corruptions that deliberately try to 

mislead an algorithm trying to learn a low-dimensional representation of the 

data

● A note: PCR-based approaches are quite slow. 



Problem Formulation

Assume that the feature matrix comes from an adversarially-corrupted 

approximately low-rank matrix.

Ground Truth

True model

Low-dim representation

Noisy feature matrix

Noise

Corruption Additional n1 rows of examples and labels



Main Takeaways

Goal: with high probability, being close to a model learned on the noiseless, 

uncorrupted classifier. Find estimate    of model parameter   .

1. Recover the subspace of the noiseless, uncorrupted classifier

2. Project feature matrix onto this subspace, and estimate using robust principle 

component regression



Main Theorems

Conditions for recoverable subspace:

● Theorems 1, 2: If we do not have too many corrupt samples, we can recover the 

subspace in the noiseless case: 𝑛1 +𝑀𝑋𝑘−1 𝑿∗ < 𝑛

● Theorems 3, 4: If the feature matrix is not so noisy that we can be fooled into 

thinking we’re closer to a different adversarially-targeted basis, we can recover the 

subspace in the noisy case.

Algorithm for recovering the low-dimensional basis:

● Theorem 5: Trimmed Principal Component Regression recovers መ𝛽 such that the 

learner is tolerant to the attacks defined.



Step 1: Robust Subspace Recovery

How can an adversary influence subspace recovery (subspace of rank k?)



Step 2: Trimmed Principal Component Regression

Assume B is an orthogonal basis of k row vectors, and that  

We change the problem to                                        ,  where the adversary is 

allowed to corrupt U.

● Trim out the samples with the biggest 

● We expect that the random noise on the label is small!



Algorithms

● Alternating minimization to find the best rank-k representation of X

● Trimmed optimization problems: also alternating minimization techniques

Trimmed optimization is not guaranteed to get global optima, but does well with 

random start.



Experimental results



Experimental results



Discussion

Pros: 

● Robust to a constant number of corruptions, that can be corrupted in any 

manner, but can be maliciously targeting the subspace.

● Handles both noise, and deliberate corruption to the underlying subspace

● Efficiency/scalability

Cons

● Limited to linear regression

● Requires knowledge of the number of corrupted rows


