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Background

Logistic Regression formulation:
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Maximal-likelihood estimate of LR is
very sensitive to outliers
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Literature Review

Common approach: M-estimator based, e.g.
Pregiobon:

B = argmin > p(6i(5)
1=1

Huber-type function used for robustifying loss

Still sensitive to high leverage covariates.

T-logistic regression

t = 1 (logistic) loss
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Ding et. al, NIPS (2010)
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Literature Review Cont.

Robust sparse regression:

e Use a trimmed standard vector inner product
e Convex programming method for estimating sparse parameters of logistic
regression

mgx;yi (i, B, st. |81 < /5, 18] < 1

e But, this is still sensitive to higher counts of corrupted samples.



Problem Formulation: Logistic Regression

Assume an uncorrupted LR model:

1
P{yi=+1} =

[ exp (—(7 0 1 o)

With gaussian noise v; ~ N (0, ¢2)

A constant number of samples may be adversarially corrupted, without
assumption: 70 + 701 samples, 71 can be corrupted.

Assumption: i.i.d. sub-Gaussian features



Main Takeaways

RoLR algorithm

1. Remove the samples with overly large magnitude
2. Maximize a trimmed correlation of remaining samples (using LP):

l.e. minimize a summation of top n inner products



Main Theorem

Theorem 1: Let A be the ratio of the corrupoters to honest points: % £ be the output of RoLR, and

B* be the ground truth parameter. Then, we have with high probability (> 1 — 4 exp(— %) ) for
some absolute constant ¢, and for subgaussian parameter p:

lo logn
< 214(c2,02) + 2B (ﬁ) - 8/10,?\/ 6P, 08
n n n

If we set look at the noiseless case g2 = 1, and set the feature variance ¢ = 1, and

1B — B

asymptotically % — 0, then we get threshold

|B — B7|| = 3.544




Other detalls

Why does maximizing the correlation work? We want to minimize HB — 5* H

Ely(3,2) —y (8, 2)] =n(1—(8,8) =26 - 8|

Instead of a maximal likelihood estimation, reformulate to a linear programming
problem:

n+ni

max —v-n — Y & ostyi(Ba)+v+&>0,8€BEr>0,62>0.
s i=1



Other detalls: Binary Classification

If instead we are interested in deterministically labelled samples:
y; = sign ((B%, 2;) +v;)

A similar argument follows from calculating the expectation of the correlation (the
product y; {03, 33@,) and showing that minimizing this will bring us closer to the
optimal parameter.



Simulation Results
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Discussion

Pros:

e Converges to global optimum

e Allow for any kind of corruptions. Bounds only depend on ratio of honest to
corrupted samples, and the covariance of the signal and noise.

e Linear programming approach = better computational efficiency



Discussion cont.

cons:

e Basic linear binary classification.

e In the purely honest samples situation: RoLR suffers some performance
degradation.

e Sub-Gaussian requirement on generating the non-corrupted samples



Robust High-Dimensional
Linear Regression
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Background

e \Very closely related to last work. We now consider regression.
e Instead of arbitrarily corrupted rows, corruptions that deliberately try to

mislead an algorithm trying to learn a low-dimensional representation of the
data

e A note: PCR-based approaches are quite slow.



Problem Formulation

Assume that the feature matrix comes from an adversarially-corrupted
approximately low-rank matrix.

Ground Truth y+ = Xi0" = UBy;

True model I5; *

Low-dim representation U=X.B

Noisy feature matrix Xp=Xs+N

Noise variance o, |[N|[co < €;y0 =y« + €
Corruption Additional n1 rows of examples and labels




Main Takeaways

Goal: with high probability, being close to a model learned on the noiseless,
uncorrupted classifier. Find estimate 8 of model parameter 5.

1. Recover the subspace of the noiseless, uncorrupted classifier X*
2. Project feature matrix onto this subspace, and estimate using robust principle
component regression



Main Theorems

Conditions for recoverable subspace:

e Theorems 1, 2: If we do not have too many corrupt samples, we can recover the
subspace in the noiseless case: n; + MX,,_; (X,) < n

e Theorems 3, 4: If the feature matrix is not so noisy that we can be fooled into
thinking we’re closer to a different adversarially-targeted basis, we can recover the
subspace in the noisy case.

Algorithm for recovering the low-dimensional basis:

e Theorem 5: Trimmed Principal Component Regression recovers £ such that the
learner is tolerant to the attacks defined.



Step 1. Robust Subspace Recovery

How can an adversary influence subspace recovery (subspace of rank k?)

Noiseless Noise Residual Subspace Residual

\

b <n, J




Step 2: Trimmed Principal Component Regression

Assume B is an orthogonal basis of k row vectors, and that X, = U,B

We change the problem to yx = X8 = Uﬁ;}, where the adversary is
allowed to corrupt U.

e Trim out the samples with the biggest y; — ;8
e \We expect that the random noise on the label is small!



Algorithms
e Alternating minimization to find the best rank-k representation of X
e Trimmed optimization problems: also alternating minimization techniques

Trimmed optimization is not guaranteed to get global optima, but does well with
random start.



Experimental results
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Figure 1: (a) Runtime, as a function of rank. (b) Runtime, as a function of the number of rows (n).
(c) Rate of correct identification of corrupted rows.




Experimental results
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Discussion

Pros:

e Robust to a constant number of corruptions, that can be corrupted in any
manner, but can be maliciously targeting the subspace.

e Handles both noise, and deliberate corruption to the underlying subspace

e Efficiency/scalability

Cons

e Limited to linear regression
e Requires knowledge of the number of corrupted rows



