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Context
Multi-Party learning

• Training data comes from several 
providers, which is then centrally 
aggregated into a model.


• An adversary can control some 
subset of providers.


• Via a -poisoning attack, the 
adversary can provably increase the 
probability of some bad property of 
the model.
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-poisoning attacks(k, p)

• An adversary  chooses  (out of ) data providers to control.


• Each provider  draws from a distribution  each round. If it is corrupted, it 
draws a sample from the adversarial distribution  instead.


•  differs from  by at most  in total variational distance.
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How provably powerful is a -poisoning 
attack on a multi-party learner? 

(k, p)
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• Let  be some bad property defined on the output of a multi-party learning 
protocol. .

B
Pr(B)Benign = μ

• There exists a polynomial-time -poisoning attack  such that it can 
increase the probability of  from  to .

(k, p) Adv
B μ μ1− kp

m

• The increase in probability is positively related to the fraction of parties 
controlled and the allowable distributional distance.



Discussion

• These are universal attacks applicable to any learner on any task.


• These attacks apply to federated learning — data distributions are defined 
per-provider. A provider may send a different sort of data or even updated 
model parameters.


• The attacker only needs to know the effect of each update on the central 
model — not the actual data!
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Technical overview
An informal description of the proof

• The main idea is to treat the learning process as a random process and then 
perform a biasing attack.

• By controlling blocks of training data the adversary can increase the expected 
value of this process.

• The bad property  is a function on this process. We ultimately want to bias 
this function up. In practice, this might model the loss of a model.
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Technical overview
How do we bias the random process upwards?

• What’s the biasing model? The authors take inspiration from coin-tossing 
biasing attacks and present generalised -tampering.p

• Let . Assume the adversary is in control at round . 
Perform a rejection sampling attack:


• Generate some random (tampered) continuation . Let 
.


• If , broadcast an adversarial sample, otherwise retry.

f : (x1, x2, …, xn) ↦ {0,1} i

(x′ i+1, …, x′ n)
s = f(x1, …, x′ n)

s = 1

• The details are in the selection of the adversarial distribution!
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Discussion

• A successful attack depends on a positive initial probability for the bad property . 
Given enough foresight, a defender might zero out these probabilities and neutralise a 

-poisoning attack.
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• To weaken the above, a defender might make the initial probability as low as possible, 
making the -poisoning attacker less effective.(k, p)

• The attack requires oracle access to the actual broadcasted data distributions. While 
this models a strong adversary, a defender may attempt to obfuscate these making 
the attack less effective or more costly to execute.

• It might pay for a defender to add a detection method to “sanitise” the list of 
providers, given some prior about  (perhaps easier for high !).di p



Summary

• -poisoning attacks can provably increase the probability of arbitrary bad 
properties (presumably also ‘good’ ones!).


• A few defences we can think about revolve around eliminating or reducing the 
prior probability of those properties. Defences built around priors on  are 
also worth considering.


• However, in this context, a defender cannot hope to improve defences 
against this limit.

(k, p)
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Context
Trojan attacks

• Trojan attacks on neural networks occur when an adversary covertly includes 
behaviour into a published model. For example, a model will perform normally 
unless it is triggered by a particular pattern on a street sign which will cause 
the behaviour the attacker desires.

• But if you don’t have access to the training data and you don’t control the 
training phase, how do you execute such an attack?

• The authors demonstrate how to inject a trojan trigger into an arbitrary model 
with realistic assumptions on an adversary.



Trojan triggers
Attack description

• The attack proceeds in three phases. The objective is to produce a network 
that will mislabel an example if it is stamped with the trojan trigger.


• First phase: trojan trigger generation
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Attack description

• Trigger generation selects input nodes in the mask and then performs 
gradient descent to optimise for large activations across some set of neurons 
in a hidden layer.

• That is — the loss function is the difference between the current activations 
and target activations.

• How do we select internal neurons? We need them to be easily manipulable 
— it turns out that the more connected neurons work better.





Trojan triggers
Attack description



Trojan triggers
Attack description

• Second phase: training data generation.



Trojan triggers
Attack description

• Second phase: training data generation.

• To actually trojan the network, we need to retrain it! To do that, we need to 
construct some synthetic dataset because we don’t have access to the 
original training data.



Trojan triggers
Attack description

• Second phase: training data generation.

• To actually trojan the network, we need to retrain it! To do that, we need to 
construct some synthetic dataset because we don’t have access to the 
original training data.

• For each output node, start with an average but representative image (e.g. an 
average face), and then use gradient descent to modify this input image until 
it generates large confidence scores on the output node.



Trojan triggers
Attack description

• Second phase: training data generation.

• To actually trojan the network, we need to retrain it! To do that, we need to 
construct some synthetic dataset because we don’t have access to the 
original training data.

• For each output node, start with an average but representative image (e.g. an 
average face), and then use gradient descent to modify this input image until 
it generates large confidence scores on the output node.

• Then denoise it a little!
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Trojan triggers
Attack description

• Third phase: retraining

• Now that we’ve got a trojan trigger and a training dataset. We can retrain the 
model to have the behaviour we want — and we only need to retrain the 
layers between the trojaned layer and the output!

• For each output node, generate a pair of training images — one with the 
trojan trigger stamp, and one without. Then retrain the model to have normal 
output behaviour without the trojan trigger.

• This “establishes a strong link between the [trojaned] neurons and [the] output 
node”





Experimental results
Trojan triggers

• “Ext+Tri” corresponds to the attack success rate on out-of-sample data. 
Great results!



Experimental results
Trojan triggers

• Generalises to several different problems as well.
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Discussion

• The training data generation method might be interesting when combined with a black-box 
attack!

• The authors discussed incremental learning being a failed approach to the retraining phase 
because it performed poorly on the training data. However, most realistic attacks are likely to 
use out-of-sample data. Incremental training would increase the risk of detection, however.

• This attack would be easily defeated by cryptographic hashing. Is it possible to maintain the 
effectiveness of this attack while also causing a hash collision?

• The trojan patch is very noticeable and presumably detectable, at least for image recognition. 
Depending on the specific attack, this may not matter.

• This is a relatively complex method to perform a trojaning attack — see Tang et al. 2020.



Summary

• Via this attack we can insert a stealthy backdoor into an arbitrary model that 
will both not degrade original performance and be close to 100% effective in 
the out-of-sample case.


• The attack itself, however, is very noticeable and standard digital signature 
verification is likely to present an effective defence.


