
Defense Against Adversarial
Attacks (Theoretic)



Recall the empirical defense approaches

• PeerNet: leveraging the peer information (consistency)

• Distillation as a defense: ensure the classification output by a DNN 
remains constant in a closed neighborhood around any given sample 
extracted from the input distribution

• PGD adversarial training



Towards Deep Learning Models Resistant to 
Adversarial Attacks
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• Use a natural saddle point (min-max) formulation to capture the 
notion of security against adversarial attacks in a principled 
manner.

• The formulation casts both attacks and defenses into a common 
theoretical framework.

• Motivate projected gradient descent (PGD) as a universal “first-
order adversary”.



Model Capacity
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Towards Deep Learning Models Resistant to 
Adversarial Attacks



Beyond the Min-max Game

• Will it help if we have more knowledge about our learning tasks?
• General understanding about ML models

• Properties of specific learning tasks
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Decision Boundary Based Detection



Decision Boundary Analysis of Adversarial
Examples
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Takeaways

• Decision boundaries of DNNs are important towards improving
learning robustness

• Isolated islands in the data manifold would lead to harder
detected/defensed adversarial behaviors





Certified Robustness for DNNs

https://github.com/AI-secure/Provable-Training-and-Verification-Approaches-Towards-Robust-
Neural-Networks

https://github.com/AI-secure/Provable-Training-and-Verification-Approaches-Towards-Robust-Neural-Networks


Certified Robustness via Randomized
Smoothing
• Neyman-Pearson lemma

• Smoothed classifier

• Certification bound
• tightness



Related reading: Mitigating Evasion Attacks to Deep 
Neural Networks via Region-based Classification

Illustration of the region-based classification. x 
is a testing benign example and x’ is the 
corresponding adversarial example. The
hypercube centered at x’ intersects the most 
with the class region that has the true label.



Smoothed
classifier:

Certified Robustness via Randomized
Smoothing



Adversarial Attacks: Decision Boundary Intuition

“fish”

“cat”

“It’s easy for a point to cross 
the decision boundary with a 

small perturbation”



Defense: Adversarial Retraining

“fish”

“cat”

Robustness: “The points near
(by some distance measure) a 
point should have the same 

label”



“fish”

“cat”

Defense: Adversarial Retraining

“Sample neighboring 
points and add to 
training dataset for 

retraining”



“fish”

“cat”

Defense: Adversarial Retraining



“fish”

“cat”

Defense: Adversarial Retraining

“Best-effort” defense
No guarantee on robustness



Defense: Randomized Smoothing

Base: “fish”

Base: “cat”

Original Cat Image



Defense: Randomized Smoothing

Base: “fish”

Base: “cat”

Smoothed: “cat”! Original Cat Image



Defense: Randomized Smoothing

Smoothed: “still cat!”!

Base: “fish”

Base: “cat”

Original Cat Image



Defense: Randomized Smoothing

Base: “fish”

Base: “cat”

Smoothed: “fish”!

Original Cat Image



Defense: Randomized Smoothing

Base: “fish”

Base: “cat”

Prediction does not 
change within this 
radius -> Robust!

Original Cat Image



High-level Intuition of Randomized Smoothing

• Goal: “Smooth” out the classifier, use the class that 
takes the largest proportion of the predictions (by 
base classifier) in the Gaussian ball around the 
given point x as prediction of smoothed classifier.

Base classifier -> Smoothed Classifier

Image Credit: Certified Adversarial Robustness via Randomized Smoothing

Lower bound of the 
most probable class

Upper bound of the 
second most probable class

cat fish

cat

fish



Robustness Guarantee

• No assumption on f

• Certified radius R is large when: noise level is 
high; pA is large; pB is small. When pA is close to 
1, R goes to infinity.



(Informal) Understanding of Robustness 
Guarantee



(Informal) Understanding of Robustness 
Guarantee

Two points: the original image and the perturbed 
image



(Informal) Understanding of Robustness 
Guarantee

Robust: We would like these two points to have the 
same label under the prediction of smoothed classifier



(Informal) Understanding of Robustness 
Guarantee

Indicator Function
I = 1 if arg max f(x) is index of class A

Probability Density Function

Probability of         predicted as class A



(Informal) Understanding of Robustness 
Guarantee



(Informal) Understanding of Robustness 
Guarantee

Probability of         predicted as class A



(Informal) Understanding of Robustness 
Guarantee



(Informal) Understanding of Robustness 
Guarantee



(Informal) Understanding of Robustness 
Guarantee

?

Seek the worst case scenario!



(Informal) Understanding of Robustness 
Guarantee

worst case scenario:
“the lower bound of ( * )”



(Informal) Understanding of Robustness 
Guarantee

Worst case scenario Intuition:

-> Neyman Pearson Lemma!



(Intuitive) Connection between What We Want and 
Neyman-Pearson

Bound ratio between the two densitiesNeyman-Pearson: 



(Intuitive) Connection between What We Want and 
Neyman-Pearson

Bound ratio between the two densities

When the original image is predicted correctly with high 
probability,

The perturbed image will also be predicted correctly with high probability.

Neyman-Pearson: 

if

then

def



Neyman-Pearson Lemma Proof

Backup Slide



Use Neyman-Pearson to show Robustness Condition



(Revisit) Robustness Theorem

Need to show:

Known:



(Formal) Proof of Robustness Guarantee

Condition of set S:



(Formal) Proof of Robustness Guarantee

Construct:

Easy to show:

Condition of set S:



(Formal) Proof of Robustness Guarantee

Define:

By definition:

Easy to show:



(Formal) Proof of Robustness Guarantee

Define:

Given:

Easy to show:



(Proof) Lower Bound of Correct Class A

Define:

Given:

By Neyman-Pearson Get:



(Proof) Lower Bound of Correct Class A

Define:

Given:

By Neyman-Pearson + definition:



(Proof) Lower Bound of Correct Class A

Define:

Given:

We get the lower bound!

By Neyman-Pearson + definition:



(Recall) The Other Direction

Other Classes B

Correct Class A



(Proof) Upper Bound of Other Class B

Almost repeat the proof -> upper bound

Define:

Given:

Get:



(Formal) Proof of Robustness Guarantee

We have:

We want:

This is the missing component!



(Formal) Proof of Robustness Guarantee



(Formal) Proof of Robustness Guarantee

We have:

We want:

Proof Done.



Experiments: Training

• Method: train the base classifier with Gaussian 
data augmentation at variance σ^2

The log-probabilities that f classifies each noisy 
point as the ground truth label of the clean point



Experiments: Training

• Method: train the base classifier with Gaussian 
data augmentation at variance σ^2

Negative of the cross-entropy loss 
under Gaussian data augmentation

[Jensen’s inequality & concavity of log]



Approximate Certified Accuracy

Approximate certified accuracy attained by randomized 
smoothing on CIFAR-10 (top) and ImageNet (bottom)

Image Credit: Certified Adversarial Robustness via Randomized Smoothing

• Robustness/accuracy tradeoff
• σ low -> small radii certified with 

high accuracy, but large radii 
cannot be certified. 

• σ high -> larger radii can be 
certified, but smaller radii are 
certified at a lower accuracy.



Intuition: Linear Classifier as Worst Case

Image Credit: Certified Adversarial Robustness via Randomized Smoothing

“The certified bound for a linear two-class classifier is tight”



Smoothing a Two-Class Linear Classifier

Intuition: An isotropic Gaussian will put 
more mass on whichever half-space its 
center x lies in. So smoothing does not 
change decision for any point.

the other direction (-1) is similar



Two-Class Linear Classifier Certified Radius

Thm1:

Prop3:



Neyman-Pearson Lemma (revisit)

• The “Best” rejection region

• Alpha and beta levels

• Type I and type II errors



Takeaways

• “Smoothed” classifiers can improve the consistency of nearby regions
for a given instance

• The best test from Neyman-pearson provides tight bound for the
certified robustness

• There are many variations of certified robustness via randomized
smoothing



Provable Defenses Against Adversarial Examples
via the convex outer adversarial polytope

• A method to learn deep ReLU-based classifiers which are provably
robust against norm bounded adversarial perturbations

• Consider a convex outer approximation of the set of activations
reachable through a norm-bounded perturbation

• A robust optimization procedure that minimizes the worst case loss
over the outer region (linear program)

• Execute a few more forward and backward passes through a modified
network and achieve provable robustness to any norm-bounded adv



Adversarial polytope for deep ReLU networks

• Given a ReLU based network

• represents a linear operator such as multiply or convolution

No point within this outer approximation exists that will change the class prediction of an example 



Adversarial polytope for deep ReLU networks

• Linear relaxation of ReLU

• Robust guarantees via the convex outer adversarial polytope

• False positive? False negative?
• +, 0

Denotes the outer bound on the adversarial polytope from replacing the ReLU constraints

Challenges:
1. Solve the LP for each examples

for each target is intractable;
2. How to compute l and u.



Efficient Optimization via the Dual Network
• Dual problem

Any feasible dual solution provides a guaranteed 
lower bound on the solution of the primal 



Efficient Robust Optimization

• Standard robust optimization

• Distances to decision boundary



Experiments



Similar reading

• Certifying some distributional robustness with principled adversarial
training

The Lagrangian relaxation for a fixed penalty

For benign data, previous work obtain worse accuracy than this one



Differential privacy VS. robustness

• Certified Robustness to Adversarial Examples with Differential Privacy



Takeaways

• Leveraging dual of the primal constrained optimization to provide
provable robustness guarantee

• Linear relaxation would lead to loose robustness bound



On the Effectiveness of Interval Bound 
Propagation for Training Verifiably Robust Models

Robustness to the projected gradient descent (PGD) attack is not a true measure of robustness 
(even for small convolutional neural networks). Given a seemingly robust neural network, the 
worst-case perturbation of size 0.1 found using 200 PGD iterations and 10 random restarts 
(shown at the top) is correctly classified as an “eight”. However, a worst case perturbation 
classified as a “two” can be found through exhaustive search (shown at the bottom)



On the Effectiveness of Interval Bound 
Propagation for Training Verifiably Robust Models

Illustration of interval bound propagation. From the left, the adversarial polytope (illustrated 
in 2D for clarity) of the nominal image of a “nine” (in red) is propagated through a 
convolutional network. At each layer, the polytope deforms itself until the last layer where it 
takes a complicated and non-convex shape in logit space. Interval bounds (in gray) can be 
propagated similarly: after each layer the bounds are reshaped to be axis-aligned bounding 
boxes that always encompass the adversarial polytope. In logit space, it becomes easy to 
compute an upper bound on the worst case violation of the specification to verify


