Defense Against Adversarial
Attacks



Recall the classical detection methods

* Pre-processing the image with different transformation methods
* Train a network to tell the adversarial instances apart

* Leverage spatial/temporal properties to check the consistency —
indicating adversarial behaviors

* Map the data to other data manifold by computing meaningful metric
to measure differences



Beyond the Min-max Game

* What if we have more knowledge about our learning tasks?
* Properties of learning tasks and data
e General understanding about ML models



Characterize Adversarial Examples Based on Spatial Consistency
Information for Semantic Segmentation

* Attacks against semantic segmentation

e State-of-the-art attacks against segmentation: Houdini [NIPS2017],
DAG [ICCV 2017]

* We design diverse adversarial targets: hello kitty, pure color, a real
scene, ECCV, color shift, strips of even color of classes

* Cityscapes and BDD datasets

Adversarial Examples



Spatial Context Information

e Spatial consistency is a distinct property of image
segmentation

* Perturbation at one pixel wiII potentially affect the prediction
of surrounding pixels 2/ (m Zv i log Vin|

(c) DAG | Kitty (d) DAG | Pure  (e) Houdini | Kitty (f) Houdini | Pure



Perturbation on single patch may loss its
adversarial effect

» Spatial consistency: the consistency of segmentation results for randomly
selected patches from an image

* Such spatial consistency information from benign and adversarial instances are
distinguishable

* We apply mIOU to compare the segmentation results between patches

* For each class, Intersection over Union (IOU) is calculated as TP/(TP+FP+FN). Here we
calculate the relative mIOU for each pair of patches
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We apply mIOU to evaluate the consistency information for
patches from benign and adversarial instances quantitatively

* Detection

g) ::gml instance miOU
.g i w,‘__,lf ARG
8 0.70
2
3
3 0.08
ey
b=
X

0.09

L
Spatial Consistency



Adaptive Attack Against Spatial Consistency
Based Detection

* Adaptive attack:
* Assume the attacker has perfect knowledge of #selected patches: K

* We generate perturbation that the selected k patches can all be mis-segmented to
the corresponding regions within adversarial target
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Detecting adversarial instances based on
spatial consistency information

* Both the spatial consistency based detection and the scaling based baseline
achieve promising detection rate on different attacks

* The scaling based baseline fails to detect strong adaptive attacks while the spatial
based method can

l Detection |/ Detection Adap j
Method | Model | mIOU DAG Houdini DAG Houdini
Pure |Kitty‘ Pure ‘Kitty Pure ‘Kitty| Pure ‘Kitty

0.5 DRN 100%| 95% [100%| 99% 1100%| 67% |100%| 78%
Scale (3.0 (16.4M) 66.7 1100%|100%|100%|100%1100%| 0% |97% | 0%
(std) |5.0 100%(100%|100%|100%§100%| 0% | 71% | 0%
1 91% | 91% | 94% | 92% | 98% | 94% | 92% | 94%
Spatial| 5 | DRN 66.7 100%(100%|100% | 100% {100%| 100% | 100%]| 100%
(K) |10 |(16.4M) " 1100%(100%|100%[100%1100% | 100%| 100% | 100%
50 1100%|100%|100% 100%&00% 100%|100% 100‘@
N 7

10



Takeaways

* Spatial consistency information can be potentially applied to help
distinguish benign and adversarial instances against segmentation
models.

* Strong adaptive attacker can hardly succeed when large randomness
is incorporated into the model



Adversarial Frames In Videos

AAAI
2019

Attacks on
segmentation

Attacks on pose
estimation

Attacks on object
detection




Defensing Adversarial behaviors in Videos —

Temporal Dependency
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Task Attack Tareet Previous Detection Detection Adap

) Method g Frames 1 ‘ 3 ‘ 5 ] | 3 | 5
CVPR Benign | 100% | 100% | 100% | 100% | 100% | 100%
Adversarial | 100% | 100% | 100% | 100% | 100% | 100%
. , Benign | 100% | 100% | 100% | 100% | 100% | 100%
Houdini | Remapping |\ 4 o carial | 100% | 100% | 100% | 100% | 100% | 100%
‘ Benign | 100% | 100% | 100% | 100% | 100% | 100%
Semantic Stripe Adversarial | 100% | 100% | 100% | 99% | 100% | 100%
Segmentation VPR Benign | 100% | 100% | 100% | 100% | 100% | 100%
Adversarial | 100% | 100% | 100% | 100% | 100% | 100%
DAG Remapping | BEEn | 100% | 100% | 100% | 100% | 100% | 100%
Adversarial | 100% | 100% | 100% | 100% | 100% | 100%
Stripe Benign | 100% | 100% | 100% | 100% | 100% | 100%
Adversarial | 100% | 100% | 100% | 100% | 100% | 100%
Human hufle Benign | 100% | 100% | 100% | 100% | 100% | 100%
- Houdini Adversarial | 100% | 100% | 100% | 99% | 100% | 100%
Estimation Transpose Benign | 100% | 100% | 100% | 98% | 100% | 100%
Adversarial | 98% | 99% | 100% | 98% | 99% | 100%
Al Benign | 100% | 100% | 100% | 100% | 100% | 100%
Object DAG Adversarial | 100% | 100% | 100% | 98% | 100% | 100%
Detection person Benign 9% | 100% | 100 % | 100% | 100% | 100%
' Adversarial | 97% | 98% | 100% | 96% | 97% | 100%

The results show that choosing more random patches can improve detection

rate while k=5 is enough to achieve AUC 100%

The spatial consistency based detection is robust against strong adaptive
attackers due to the randomness in patch selection
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Temporal Consistency Based Analysis

* “Yanny” or “Laurel”? — adversarial audio

Transcribed output
(TD) comparisor
— (Swhole)

dio waveform ASR systerm

II I RNN 1 1
f{la)flise —
._> ..._’?_'. (=0 S{whole.k}-’ I I.
—l k portion Sentence| §y,
Pipeline
Example A Whole v.s. k bortion recognition
Benign — — _and the housemaid came in (whole) ’% ﬂ -

. - L
Input n IIIl in the morning the servant (k portion) g LT
Adversarial L e LT L.
input — — _mymedical appointment (whole) It

- Ihputinétahce'

he goes cancer (k portion)




PeerNets: Exploiting Peer wisdom against
adversarial attacks

* Design robust neural networks that are robust to adversarial attacks

* Defense: recover the ground truth instead of just tell adversarial
Instance apart

* Necessary step: design novel and advanced architectures built on new
computational paradigms

* PeerNets:
* Euclidean convolutions -> graph convolutions
* Non-local forward propagation: Capture global structure induced by the data
graph
* Design a peer regularization layer



PeerNets: Exploiting Peer wisdom against
adversarial attacks

* Peer Regularization layer
* For N images, each image will look for its K nearest neighbors based

on cosine similarity
* For each image, thereisa n x d feature map

K LeakyReLU (exp(a(x%, x7* )))

}ch“:i = a’&'jkp%xgzﬂ QXijppgr = K o
k=1 D k=1 LeakyReLU(eXp(a(x;, Xpp)))




PeerNets: Exploiting Peer wisdom against
adversarial attacks

 Randomized approximation

* Monte Carlo approximation
* Select smaller batch and sample the nearest neighbor from each batch

1 M K
X = — E E Q5 xJmk
D M ImkPdmk“ qmk

m=1 k=1

e Other optimization method?



PeerNets: Exploiting Peer wisdom against
adversarial attacks

e Select M = 1 during training and large M during inference
* Limitations?




Results for PeerNets

Original

Reconstructed




Visualization of perturbation
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Takeaways

* Alternate Euclidean Graph convolution to harness information from
peers can provide global information

* Can be added to any models as regularized layer —> good principle
* Not affect the benign accuracy -> important

* How to scale up?

* How to consider more peer images instead of pixels?

* Temporal information?



Similar reading

e Countering adversarial images using input transformations
* Image quilting — nearest patches
 Computationally expensive



Interesting reading

* A simple neural network module for relational reasoning

Final CNN feature maps RN
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Interesting reading

e Deformable Convolutional Networks
* Deformable convolution and deformable Rol pooling

* Augment the spatial sapling locations with additional offset which can be
learned )




Towards Deep Learning Models Resistant to
Adversarial Attacks

mgin p(0), where p(0) =Eq)~p [rgleagc L8,z + 5,y)]
e Use a natural saddle point (min-max) formulation to capture the

notion of security against adversarial attacks in a principled

mannetr.
* The formulation casts both attacks and defenses into a common

theoretical framework.
* Motivate projected gradient descent (PGD) as a universal “first-

order adversary”.

Madry et al. Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR 2017.



Model Capacity




Towards Deep Learning Models Resistant to
Adversarial Attacks

MNIST
100} [ D S | ' ' ‘ : -~ Natural
— 100 5 —=— 100 o 4l -~ FGSM
z 80 80 180 & - PGD
< | i L i e
5 60 60 60 o 01l ]
S 40 40 40 o .
<< 90| 1 20 20/ ] ;:i 0.01k |
0 1 T L ) 0 L 1 0 1 1 L 1
1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

Capacity scale Capacity scale Capacity scale Capacity scale



Decision Boundary Based Detection
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Decision Boundary Analysis of Adversarial
Examples
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False pos. False neg. Accuracy
Training attack Benign OPTBRITTLE OPTMARGIN Our approach Cao & Gong

MNIST, normal training

OPTBRITTLE 1.0% 1.0% 74.1%
OPTMARGIN 9.6 % 0.6% 7.2% 90.4% 10%
MNIST, PGD adversarial training
OPTBRITTLE 2.6% 2.0% 39.8%
OPTMARGIN 10.3% 0.4% 14.5%
CIFAR-10, normal training
OPTBRITTLE 5.3% 3.2% 56.8%
OPTMARGIN 8.4% 7.4% 5.3% 96.4% 50,
CIFAR-10, PGD adversarial training
OPTBRITTLE 0.0% 2.4% 51.8%

OPTMARGIN 3.6% 0.0% 1.2%




Takeaways

* Decision boundaries of DNNs are important towards improving
learning robustness

* |[solated islands in the data manifold would lead to harder
detected/defensed adversarial behaviors



