Fvasion Black-box Attacks



Recall: adversarial attacks against general ML

* Greedy attacks against object detectors

* Optimization based method against object
detectors/segmentation/human pose estimation etc

e Attack generative models by manipulating the representation space

* Attack decision making via manipulating the observation, action,
reward, and environment variables

* https://arxiv.org/pdf/2005.10247.pdf



https://arxiv.org/pdf/2005.10247.pdf

Black-box attacks

e Zero-Query Attack

 Random perturbation

* Difference of means

* Transferability based attack

* Query Based Attack

 Finite difference gradient estimation
* Query reduced gradient estimation

Attack setting
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The zero-query attack can be viewed as a special case for the query based attack,

where the number of queries made is zero



ransferability in machine learning: from
phenomena to black-box attacks using adversarial

samples

* Adversarial example

T* = T+ 0z where 6z = argmin f(Z + 2) # f(&)
* Adversarial sample transferazbility

Qx(f, f' |{f (Z) # f' (£ + 6z) : a;EX}|

* Intra- technlque transferability
e Cross-technique transferability



ransferability in machine learning: from
phenomena to black-box attacks using adversarial

samples

* Transferability based black-box attack

* Train a substitute model, and craft adversarial examples against the substitute,
and transfer them to a victim model

* Distillation — use the victim model as an oracle to label a synthetic
training set for the substitute

* Reservoir sampling — efficient data augmentation
 SVM and decision trees which are non-differentiable models



ransferability in machine learning: from
phenomena to black-box attacks using adversarial

samples

* Jacobian-based dataset augmentation
Spr1={Z+ X, -sgn(J¢[O(@)]: £ € S,)}US,

* Reservoir sampling

Algorithm 1 Jacobian-based augmentation with Reservoir
Sampling: sets are considered as arrays for ease of notation.

Input: S,—1, , J5, Ap
1: N |Sp_1|

2: Initialize S, as array of N 4 k items

3: S[0: N—1]« S,-1

4: for i € 0..x — 1 do _

o: Sp[N + ] <= Sp-1li] + Ap - sgn(J¢[O(Sp-1[i])])

6: end for

7: fori e xk.N —1do

8 r < random integer between 0 and ¢

9: if r < k then _

10: SH[N + 1] Sp1fi] + A, - sgn(J5[O(Sp1[i]))

11: end if
12: end for

13: return S,




Cross technique transferability
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Target Machine Learning Technique

Cross-technique transferability matrix: cell (1,j) is the percentage of adversarial samples crafted to mislead a
classifier learned using machine learning technique | that are misclassified by one trained with technique j



Takeaways

* Both intra-technique and cross-technique adversarial sample
transferabilities are consistently strong phenomena across the space
of machine learning techniques

* Black-box attacks are possible in practical settings against any
unknown machine learning classifier

* Black-box attacks against classifiers hosted by Amazon and Google
and achieve high misclassification rate, by training a logistic
regression substitute model with only 800 queries



Interesting reading

* Mixup: Beyond Empirical Rish Minimization

(1= ANz, where z;, x; are raw input vectors

T = Ax; +
Ayi + (1 — N)y;, where y;, y; are one-hot label encodings

<
|

ERM mixup

* Pros: improve the robustness of the networks
e Cons: without guarantee for accuracy or robustness and not interpretable



Takeaways

* Different data augmentation can have opposite effects: increase
attack transferability, or improve model robustness



Exploring the space of black-box attacks on
deep neural networks

* Make queries to estimate gradient based on the output

* Need to know obtain the output of the logit layer

* Interesting point: simple feature reduction is efficient for query
reduction



Query Based black-box attack

* Finite difference gradient estimation

*  Given d-dimensional vector x, we can make 2d queries to estimate the
gradient as below

g(x+4der)—g(x—de1)
24
FDx (g(x),d) = ; _0f(0 _ flx+hey)~ f(x—hey)

g(x+dey)—g(x—dey) I Tox 2h
20

* An example of approximate FGS with finite difference
Tads = x + ¢ - sign (FDx (£ (x, ), 6))
. . . Similarly, we can also approximate for
° Query redUCEd gradlent estimation [Iogit—based loss by making 2d queries ]

 Random grouping
e PCA




L. constrained strategies on Model A | FD-xentand FD-logit are

/ overlapped
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Effectiveness of various single step black-box attacks on MNIST. The y-axis represents the
variation in adversarial success as € increases.

Finite Differences method outperform other black-box attacks and achieves similar

attach success rate with the white-box attack




L. constrained strategies on Resnet-32
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Effectiveness of various single step black-box attacks on CIFAR-10. The y-axis represents the
variation in adversarial success as € increases.

Finite Differences method outperform other black-box attacks and achieves similar

attach success rate with the white-box attack




Gradient Estimation Attack with Query
Reduction

Adversarial success (%)

Random feature groupings for Model A PCA-based query reduction for Model A PCA-based query reduction for Resnet-32
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Adversarial success rates for Gradient Estimation attacks with query reduction on Model A (MNIST) and Resnet-32 (CIFAR-10).

Finite Differences method with query reduction perform approximately similar with the gradient estimation

black-box attack




Black-box Attack Clarifai

Original image, classified as “drug” Adversarial example, classified as
with a confidence of 0.99 “safe” with a confidence of 0.96

The Gradient Estimation black-box attack on Clarifai’'s Content Moderation Model



Takeaways

* Without relying on transferability, it is also possible to conduct black-
box attacks

e Gradient estimation is accurate based on finite difference method

* It is possible to reduce the number of queries and still obtain good
gradient approximation



Similar work

e Z00: zeroth order optimization based black-box attacks to deep
neural networks without training substitute models
» Estimate gradient based on queries
* Also need to access the logit layer results
* Need to make large amount of queries
 Difference: apply optimization based attack with the estimated gradient



Interesting reading

* Our transferability proof?

* The Space of Transferable Adversarial Examples

* Adversarial examples span a continuous subspace of large (~25)
dimensionality

* For two different models, a significant fraction of their subspaces is shared,
thus enabling transferability

* Empirically show similarity of different models’ decision boundaries:
boundaries are actually close in arbitrary directions, whether adversarial or
benign

If two models achieve low error for some task while also exhibiting low robustness to
adversarial examples, adversarial examples crafted on one model transfer to the other.



https://arxiv.org/abs/1704.03453

Related reading

e Adversarial Learning

* For linear classifier with binary features, it is possible prove efficiency for
black-box attack

¢ What'S ACRE (1 —|— 6) = |ea rnab|E? Algorithm 3 FINDBOOLEANIMAC(x*,x™)

y & x

 How to prove it? repeat

prev
y

* Is it possible to apply it to DNNs? -- the next paper for ooy do
if ¢(y) =1 then
toggle f in y

end if

end for

for all f; € Cy; fo € Cy; f3 ¢ C, do
toggle fi, f2, and fziny
if c(y) =1 then

toggle fi1, f2, and f3 in y

-y

end if
end for
until yPrev
return y

=Y



https://ix.cs.uoregon.edu/~lowd/kdd05lowd.pdf

Decision-Based Adversarial Attacks:
Reliable Attacks Against Black-box
Machine Learning Models



Existing Attacks & Defences

‘modify input w.r.t. loss with

Gradient-based the help of gradient’

mask the gradients!

‘use predictions to
Score-based numerically estimate the add stochastic elements!
gradient’

‘attack one, attack the other

Transfer-based with the help of training data’

robust training!
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Existing Attacks & Defences

‘modify input w.r.t. loss with

Gradient-based |the help of gradient’

mask the gradients!

| Easy to defend
| Hard to get! against!

‘use predictions to

numerically estimate the dd stochastic elements!
i gradient’

Score-based

‘attack one, attack the other
with the help of training robust training!
idata’

Transfer-based




Boundary Attack

* Direct attacks that solely rely on the final decision of
the model

e Starts from a large adversarial perturbation and then

seeks to reduce the perturbation while staying

adversarial

Untargeted
Flip to any
label

Targeted
Flip to
target label

Y

Gradient-based
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Transfer-based
Training Data T

Score-based

Detailed Model Prediction Y Final Model Prediction Y,

(e.g. probabilities or logits)

Decision-based

(e.g. max class label)

>
>

FGSM, DeepFool

L-BFGS-B, Houdini, JSMA,

Carlini & Wagner, Iterative
Gradient Descent

FGSM Transfer

Ensemble Transfer

Local Search

Z00

less information

*

this work
(Boundary Attack)

w

ax



Boundary Attack

Data: original image o, adversarial criterion c(.), decision of model d(.)

Result: adversarial example o such that the distance d(o,0) = ||o — 6H§ is minimized
initialization: k = 0, 6° ~ U(0, 1) s.t. 6° is adversarial;
while £ < maximum number of steps do
draw random perturbation from proposal distribution 77, ~ P(6%~1);
if 6! + . is adversarial then
| setoF =68 4 my;
else
| setof =oF 1
end
k=k+1

end
Algorithm 1: Minimal version of the Boundary Attack.



Input Dimension 1

Basic Intuition

starting image

K

} steps of the algorithm

*

original image
classified correctly

classified incorrectly
(adversarial)

>

Input Dimension 2

Boundary Attack: Intuition

* After each step:

* be an image!
e don’t change too much!
* be closer to original!



Boundary Attack

Data: original image o, adversarial criterion c(.), decision of model d(.)

Result: adversarial example o such that the distance d(o0,0) = ||o — 6H§ is minimized
initialization: k£ = 0, 6° ~ (0, 1) s.t. 8" is adversarial;
while &k < maximum number of steps do
draw random perturbation from proposal distribution 79;, ~ P (6% ~1);
if 6~ + 1y, is adversarial then
‘ set 6F = oF 1 + my;
else
| seto® =oF 1,
end
k=k+1

end
Algorithm 1: Minimal version of the Boundary Attack.



Proposal Distribution

1. The perturbed sample lies within the input domain,
oF 1+ nF € [0,255]. (1)
2. The perturbation has a relative size of 9,
[7*||, = 6 - d(o,571). 2)

3. The perturbation reduces the distance of the perturbed image towards the original input by
a relative amount e,

d(0,0% 1) — d(0,05 1 + 1) = €-d(o,0%1). (3)



Boundary Attack: one step

Single step Hyperparameters

#1. random orthogonal step Adjusting step-size of #1
#2. step towards original image

< — - - I —

~50% of orthogonal perturbations
#1 should be within adversarial region

#2& Adjusting step-size of #2

—

\

Success rate of total perturbation should
be higher then threshold (e.g. 25%).



Evaluation Metric

. 1
Sa(M) = median (F ||"7A,M(0i)||3>

c RN the adversarial perturbation that the attack A finds on model

nA,Mm (O"’) M for the i-th sample o _i.



Performance: Untargeted Attack

454 calls

711 calls

1053 calls

0 calls

80 calls

1229 calls 1828 calls

ad

2.1e-03
42213 calls 200667 calls

3470 calls

"1.4e-01
2476 calls

5.6e-04

8272 calls

s 8

3.3e-04 1.7e-04 1.1e-04 7.7e-05 4.4e-05 6.1e-06 1.2e-06
ImageNet
Attack Type MNIST CIFAR VGG-19 ResNet-50 Inception-v3
FGSM gradient-based  4.2e-02 2.5¢-05  1.0e-06 1.0e-06 9.7e-07
DeepFool gradient-based  4.3e-03 5.8¢-06  1.9¢-07 7.5e-08 5.2e-08
Carlini & Wagner gradient-based  2.2e-03 7.5e¢-06  5.7¢-07 2.2e-07 7.6e-08
Boundary (ours) decision-based  3.6e-03 5.6e-06  2.9¢-07 1.0e-07 6.5¢-08




Performance: Targeted Attack

613 calls 2449 calls 4039 calls 5455 calls 13301 calls 15981 calls

original

Attack Type MNIST CIFAR VGG-19

Carlini & Wagner gradient-based 4.8¢-03 3.0e-05 5.7e-06
Boundary (ours) decision-based 6.5¢-03 3.3e-05 9.9e-06




Attack Defensive Distillation

e:r:.;/T
eTi/T
D€

1. Train a teacher network as usual but with temperature 7'.

2. Train a distilled network—with the same architecture as the teacher—on the softmax out-
puts of the teacher. Both the distilled network and the teacher use temperature 7'.

3. Evaluate the distilled network at temperature 7' = 1 at test time.

softmaz(x,T); =

MNIST CIFAR
Attack Type standard distilled standard distilled
FGSM gradient-based 4.2e-02 fails  2.5e-05 fails

Boundary (ours) decision-based 3.6e-03 4.2e-03  5.6e-06 @ 1.3e-05




Real-world Application Attack

Original

Clarifai Brand Model Clarifai Celebrity Model
| SAP UPS Mercedes Shell Samsung ‘ [ J. Lawrence J. Depp E. Stone G. Clooney L. DiCaprio I
k ;@ a

Adversarial

Warner Brothers No Logo No Logo No Logo No Logo H. Hasselhoff C. Aguilera K. Williams

AT




Takeaways

« Boundary Attack: decision-based black-box attack

* Drawback:
* need many Iterations to converge,
* may trapped in local minimum.



Similar reading

* HopSkipJumpAttack: A Query-Efficient Decision-Based Attack

Algorithm 2 HopSkipJumpAttack

Require: Classifier C, a sample z, constraint £, initial batch size By, iterations T'.
Ensure: Perturbed image x;.
Set 6 (Equation (17)).
Initialize at £y with ¢« (Zg) = 1.
Compute dy = ||Zg — 2*||p.
fortinl.,2,.... T —1do
(Boundary search)
z¢ = BIN-SEARCH(Z;—1, ,0, ¢z+,D)
(Gradient-direction estimation)
Sample B; = Bg\/f unit vectors uy,...,ups,.
Set d; (Equation (17)).
Compute v;(z;, 6;) (Equation (14)).
(Step size search)
Initialize step size & = ||z, — z*|,/Vt.
while ¢, (z; + g,v;) = 0 do
< &i/2.
end while
Set T = xy + &vs.
Compute d; = ||Z; — z*||-
end for
Output z; = BIN-SEARCH(Z;_1, x, 0, ¢+, D).




