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Today’s Goal

e Adversarial attacks: FGSM, CW, PGD, BIM, Deepfool, JSMA, Physical
attack

* Potential defense principles
 Leverage intrinsic information from data/ML tasks

* Leverage extrinsic information from the open world, such as commonsense
knowledge

e Review format

* Discuss the potential topics for final projects



Intriguing Properties of Neural
Networks




Background

* A neural network is a function with trainable parameters that learns a
given mapping

* Given an image, classify it as different classes
* Give a review, classify it as good or bad
* Given a file, classify it as malware or benign



Background: accuracy

* ImageNet 2011 best result: 75% accuracy
* No neural nets used

* ImageNet 2012 best result: 85% accuracy
* Only top submission uses Neural nets

* ImageNet 2013 best result: 89% accuracy
e All top submissions use Neural nets



Intriguing Findings

No distinction between individual high level units
and their random linear combinations.

Network can misclassify an image if we apply
certain specific hardly perceptible perturbations to

the image.
These distorted images or adversarial examples

generalize fairly well even with different hyper-
parameters as well as datasets.



Interpretation of Higher Units

z' = arg max(d(zx), e;)
rxcel

BhERGEENEN

(a) Unit sensitive to lower round stroke. (b) Unit sensitive to upper round stroke, or
lower straight stroke.

(c) Unit senstive to left, upper round (d) Unit senstive to diagonal straight
stroke. stroke.

Figure 1: An MNIST experiment. The figure shows images that maximize the activation of various units
(maximum stimulation in the natural basis direction). Images within each row share semantic properties.
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(a) Direction sensitive to upper straight (b) Direction sensitive to lower left loop.
stroke, or lower round stroke.

EERNCASEREE

(c) Direction senstive to round top stroke. (d) Direction sensitive to right, upper
round stroke.

Figure 2: An MNIST experiment. The figure shows images that maximize the activations in a random direction
(maximum stimulation in a random basis). Images within each row share semantic properties.
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(a) Unit sensitive to white flowers. (b) Unit sensitive to postures.
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(c) Unit senstive to round, spiky ﬂowers (d) Unit senstive to round green or yellow
objects.

Figure 3: Experiment performed on ImageNet. Images stimulating single unit most (maximum stimulation in
natural basis direction). Images within each row share many semantic properties.

[hllse PSR

(a) Direction sensitive to whxte, spread (b) D1rect10n sensitive to white dogs.
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(c) Direction sensitive to spread shapes. (d) Direction sensitive to dogs with brown
heads.

Figure 4: Experiment performed on ImageNet. Images giving rise to maximum activations in a random direc-
tion (maximum stimulation in a random basis). Images within each row share many semantic properties.



Generating Adversarial Examples

Input image: x € R™
Classifier: f:R™ — {1...k}
Target label: e {l...k}

Minimize [rs subject to:  y . pis the closest image to X

1. f(x+7)=1 classified as I'by f
2. x+71E [Oal]m

When f(z) # [

Minimize c|r| + loss¢(x + r,1) subject to z + 7 € [0, 1]™



Generating Adversarial Examples

Changing an image, originally correctly classified in a way imperceptible to human
eyes, can cause a net to label the image as something else entirely.




(a) Even columns: adver- (b) Even columns: adver- (c) Randomly distorted

sarial examples for a lin- sarial examples for a 200- samples by Gaussian noise
ear (FC) classifier (std- 200-10 sigmoid network with stddev=1. Accuracy:
dev=0.06) (stddev=0.063) 51%.

Figure 7: Adversarial examples for a randomly chosen subset of MNIST compared with randomly distorted
examples. Odd columns correspond to original images, and even columns correspond to distorted counterparts.
The adversarial examples generated for the specific model have accuracy 0% for the respective model. Note
that while the randomly distorted examples are hardly readable, still they are classified correctly in half of the
cases, while the adversarial examples are never classified correctly.



Why adversarial examples exist?
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In discriminative models, decision boundary is loose. Data points
occupy much less space than what is assigned to them.
Generative models would not be easily fooled.



Why adversarial examples exist?

 Adversarial examples can be explained as a property of high-
dimensional dot products.

 The generalization of adversarial examples across different
models can be explained as a result of adversarial
perturbations being highly aligned with the weight vectors of
a model and different models learning similar functions when
trained to perform the same task.



Some meat

* Transferability

Definition 1. For a classifier f : X — Y, probability 6 € (0,1) and random

x € X, an attack strategy A (-) is called (0, f)-effective if Pr (f(x) # f(A(z))) >
1—9.

Definition 2. Total variation distance [1]. For two probability distributions
Px and Pa(x) on X, the total variation distance between them is defined by

|[Px — Pacx)llrv = maxgcx [Px (C) — Pax)(O)]-

Definition 3. Given p € (0,1), an attack strateqy A (-) is called p-covert E if
for X ~ Px, [|[Px — Pacx)llrv < p.



Interesting topic: how to prove transferability?

Lemma 1. Let f,g: X — ) be classifiers, 6, p,e € (0,1) be constants, and A (-)
be an attack strategy. Suppose that A(-) is p-covert and f,g have risk at most €.
Then Pr(f(A(x)) # g(A(x))) < 2€ + p for a random instance x ~ Px.

Theorem 3. Let f,g: X — Y be classifiers (Y € {—1,1}), d,p,e € (0,1) be
constants, and A () an attack strategy. Suppose that A(-) is p-covert and f,g
have risk at most €. Given random instance x € X, if A(-) is (6, g)-effective,
then it is also (& + 4€ + p, f)-effective.



Explaining and Harnessing
Adversarial Examples



Highlights

* Adversarial examples: speculative explanations
* Flaws in the linear nature of models

* Fast gradient sign method

e Adversarial training of deep networks

* Why adversarial examples generalize?

* Alternate Hypothesis



Introduction

e Szegedy et al. (2014b) : Vulnerability of machine learning models to
adversarial examples

* A wide variety of models with different architectures trained on
different subsets of the training data misclassify the same adversarial
example — fundamental blind spots in training algorithms?

» Speculative explanations:
e Extreme non linearity
* Insufficient model averaging and insufficient regularization



Linear explanation of adversarial examples

r=x-+n
[M]|oc < €

w'z=w'z+w'n

1 = sign(w)



Linear explanation of adversarial examples

r=x-+n
[M]|oc < €

w g=w'xz+w'n Activations grow linearly!

n = sign(w)



Linear perturbation of non-linear models

* ReLUs, maxout networks etc. - easier to optimize linear networks
e “Fast gradient sign method”

+.007 x =
T : i xTr +
x sngn.(VmJ((). x,y)) esign(VoJ (6, 7, 1))
“panda” “nematode™ “gibbon™

57.7% confidence 8.2% confidence 99.3 % confidence



Fast gradient sign — logistic regression
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Adversarial training of deep networks

* Deep networks are vulnerable to adversarial examples - Misguided
assumption

* How to overcome this?

* Training with an adversarial objective function based on the fast gradient sign
method

* Error rate reduced from 0.94% to 0.84%

—

J(O,z.y)=al(@.x,y)+(1—a)J(@,x+esign (Vo J (0, 2, v))



Why do adversarial examples generalize?
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summary

» Adversarial examples are a result of certain linearity

* Generalization of adversarial examples across different models occurs
as a result of adversarial perturbations being highly aligned with the
weight vector

* The direction of perturbation rather than space matters the most
* Introduces fast methods of generating adversarial examples

e Adversarial training can result in regularization

* Models easy to optimize are easy to perturb



summary

* Linear models lack the capacity to resist adversarial perturbation;
only structures with a hidden layer can

* RBF networks are more resistant to adversarial examples

* Models trained to model the input distribution are not resistant to
adversarial examples.

* Ensembles are not resistant to adversarial examples



General attack strategies

FGSM
« Op &' =z —¢-sign(Vlossy,(z))

* |tis designed to bdfast instead of optimal examples
BIM

+ Tara| =z}, — clip,(a - sign(Vloss (2] _,)))

JSMA
« Jacahidn<bhsed saliency map attack
* Greedily search for vulnerable pixels

* Deepfool
* Untargeted attack optimized for
* Greedy algorithm searching agaifiss “linear” hyper plans

s CW
+ aojblivatoriakoptinfizition



Towards Evaluating the Robustness of
Neural Networks



Threat Model

* Adversary has access to model parameters

* Goal: construct adversarial examples



Two ways to evaluate robustness of DNN

* Construct a proof of robustness

* Demonstrate constructive attack
* Break gradient descent?



Optimization based attack

min d(x, z")
s.t. F(2") = yx

x'is“valid”

Reformulation

. / /
min d(z,z') + (') g(x') <= 0, if F(x') =y* g(') =1 - F(z'),,
s.t. 'is“valid” g(x') >0, if F(x') I=y*



Best Case Average Case Worst Case
MNIST CIFAR MNIST CIFAR MNIST CIFAR

mean prob  mean prob || mean prob  mean prob || mean prob  mean prob
Our Ly 8.5 100% 5.9 100% 16 100% 13 100% 33 100% 24 100%
JISMA-Z 20 100% 20 100% 56 100% 58 100% 180 98% 150 100%
JSMA-F 17 100% 25 100% 45 100% 110 100% 100 100% 240 100%
Our Lo 1.36  100% 0.17  100% 1.76  100% 0.33 100% 2.60 100% 0.51 100%
Deepfool 2.11  100% 0.85 100% - - - - - - - -
Our Lo 0.13 100% 0.0092 100% 0.16 100% 0.013 100% 0.23 100% 0.019 100%
Fast Gradient Sign 0.22 100% 0.015 99% 0.26 42% 0.029 51% — 0% 0.34 1%
Iterative Gradient Sign 0.14 100% 0.0078 100% 0.19 100% 0.014 100% 0.26 100% 0.023 100%




summary

* A strong attack that can defeat defensive distillation
 Evaluation of different loss functions

* Transferability needs to be taken into account when proposing
defenses



Review format

* Summary
* Goal
* Contributions
 Specific technique details/analysis

* Advantages
e Disadvantages
* Potential improvement and other thoughts



Potential Final Project Topics

Attacks against general machine learning models such as BERT and RL systems.
Detection against attacks such as Deepfake

Robustness against poisoning attacks

GWAS for Al -- explainability

Theoretically understanding of generative models from the game theoretic
perspective

Applications of GANs (GAN Zoo)

Provable robustness for classifiers against different types of perturbation
Differential private graphs, and robust graph neural networks

Privacy analysis for generative models

Improve model robustness with unlabeled data via semi-supervised learning
Robust RL

Robust autoML

Semantic Forensics: sensing-reasoning models

Design an ensemble model which guarantees the diversity of the individual
classifiers and therefore improve robustness

Red-blue team on autonomous driving platform Carla



