Fvasion Attacks Against Various
Machine Learning Models



Recall: Non-traditional Adversarial Attacks

* Leveraging generative adversarial networks --- diverse, realistic,
efficient

* Spatially transformed adversarial examples/Wasserstein distance
based adv --- diverse, realistic

* Effective physical world attack --- spatial constrained, robust under
physical conditions



Adversarial examples for semantic
segmentation and object detection

* Generating aduv. is a critical step for evaluating and improving
robustness of learning models.

* So far we introduced adv. against classifiers
 What about other learning tasks?



Adversarial examples for semantic
segmentation and object detection

* Both segmentation and detection are based on classifying multiple
targets on an image

* Dense adversary generation (DAG)
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Adversarial examples for semantic
segmentation and object detection

Pro b I em statement Algorithm 1: Dense Adversary Generation (DAG)

Input : input image X;
the classifier f(-,-) € R,

Untargeted attack the target set 7 = {t1,t2,...,tN};

the original label set £ = {l3, s, ..., In}s
\V/na arg max fC(X + T, tn) # Zn the adversarial label set £’ = {I1,15, ..., N}
¢ the maximal iterations Mj;
Perturbation targets Ground truth Output: the adversarial perturbation r;

1 Xo X,r<0,m<«+0,To«+T;
2 while m < My and 7, # @ do

Targeted attack 3 | Tm = {tn | argmax. {fe(Xim, tn)} = ln}s
N 4 Ty
L(X, T,LC, L") = Z [fgn(X,tn) — fgf_{l (X, tn)] Ztne’rm [mef% (Xm,tn) — Vx,, fi., (Xm,tn)];
n=1 5 I‘fm — Hrm\lmrm;

6 | r+r+4r ;
7 Xmg1 — X 41005
8 m < m+ 1;
9 end

Return: r




Transferability analysis

* Cross training transfer
* Models are trained with different subset of data

e Cross network transfer
e Models are of different architecture

e Cross task transfer

* Use the perturbation generated against detection to attack a segmentation
network



Adversarial FR-VGG- R-FCN- R-FCN-
Perturbations from FR-ZE-07 | FR-ZF-0712 | FR-VGG-07 0712 RN50 RN101
None 58.70 61.07 69.14 72.07 76.40 78.06
FR-ZF-07 (ry) 3.61 22.15 66.01 69.47 74.01 75.87
FR-ZF-0712 (r3) 13.14 1.95 64.61 68.17 72.29 74.68
FR-VGG-07 (r3) 56.41 59.31 5.92 48.05 72.84 74.79
FR-VGG-0712 (ry) 56.09 58.58 31.84 3.36 70.55 72.78
r| +rs 3.98 21.63 7.00 44.14 68.89 71.56
r; + r3 (permute) 58.30 61.08 68.63 71.82 76.34 77.71
rs +ry 13.15 2.13 28.92 4.28 63.93 67.25
ro + r4 (permute) 58.51 61.09 68.68 71.78 76.23 77.71
Cross training
Adversarial FCN-Alex | FCN-Alex* | FCN-VGG | FCN-VGG* | DL-VGG | DL-RN101
Perturbations from

None 48.04 48.92 65.49 67.09 70.72 76.11

FCN-Alex (5) 3.98 7.94 64.82 66.54 70.18 75.45

FCN-Alex* (rq) 5.10 3.98 64.60 66.36 69.98 75.52

FCN-VGG (r7) 16.21 47.38 4.09 16.36 45.16 73.98

FCN-VGG* (rg) 46.10 47.21 12.72 4.18 46.33 73.76

rs +ry 4.83 8.55 423 17.59 43.95 73.26

Ts + r7 (permute) 48.03 48.90 65.47 67.09 70.69 76.04

re + s 5.52 4.23 13.89 4.98 44.18 73.01

rs 1 rs (permute) 48.03 48.90 65.47 67.05 70.69 76.05

Cross Network




Takeaways

* Heuristically generate perturbation to move each target towards the
adversarial goal

* Transferability exists for adversarial examples for
segmentation/detection

* Adding multiple adversarial perturbations often works better than
adding a single source of perturbation in terms of transferability




Similar work

* Delving into transferable adversarial examples and black-box
attacks

* Apply ensemble attack to attack multiple models to increase
targeted transferability

* Multi-source perturbation helps?



Ground truth: running shoe

VGG16 Military uniform
ResNet50 Jigsaw puzzle
ResNet101 Motor scooter
ResNet152 Mask

GoogLeNet | Chainsaw
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Targeted Adversarial Example’s Transferability
Among Two Models is Poor!

ResNetl152 | ResNetlOl | ResNet30 | VGGI6 | GoogleNet | Incept-v3
ResNet152 100% 2% 1% 1% 1% 0%
ResNet101 3% 100% 3% 2% 1% 1%
ResNet50 49 2% 100% 1% 1% 0%
VGGI6 2% 1% 2% 100% 1% 0%
GoogLeNet 1% 1% M\ 1% 100% 0%
Incept-v3 0% 0% 0% \ 0% 0% 100%

VGG16 (row) can be predicted as the targeted label by

\

Only 2% of the adversarial images generated for

ResNet50 (column)
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Black-box Attacks Based On Transferability

Adversary

Transfer to

Adversarial ‘ Black-Box
Examples

System
White-Box

Model




Ensemble Targeted Black-box Attacks Based On Transferability

Adversary

Transfer to

Adversarial Black-Box
Examples ‘

System




Clarifai.com

Ground truth from ImageNet: broom

jacamar

clarifai

Clarifai Demo Configure

GENERAL-V1.3

wall  dirfy  old  noperson
architecture  stone  building  dust

rope  rustic brick  ancient sl



Adversarial Example on Clarifai.com

«  Ground truth: broom
-« Target label: jacamar

Clarifai Demo Configure

GENERAL-Y1.3

bird nature desktop color art free
pattern bright feather painting texture
design decoration flora no person

beautiful leaf garden old illustration

NSFW-¥1.0

sfw



Similar work

* Physical Adversarial Examples for Object Detectors

Jd(x:y) — maXsESZ,bEBP(Sabsysz(x))

Cell in YOLO Bounding box

Difference: instead of ensemble over models, here it ensembles over object regions



Houdini: Fooling Deep Structured Prediction
Models

* Other deterministic objective function for attacking different learning
models?

* Houdini: tailored for the final performance measure
* Speech recognition
* Pose estimation
* Semantic segmentation



Houdini: Fooling Deep Structured Prediction
Models

* Optimization based method

Z = argmax £(ys(Z),y) fz(fﬂ’):(ngt;gg:(F(ﬂb")«s:)—F(ﬂ:’)t)+

z:||z2—z||p <€

* Houdini

Cr(0,2,y) = Pyono,1) [99(9@', y) — go(z,9) < ’7} - 0(9,y)

Stochastic margin
Confidence of the model

Task loss



adversarial attack compromised semantic segmentation framework

(a) initial prediction (b) adversarial prediction (c) source image  (d) perturbed image (e) noise
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| e =0.3 e=0.2 e=0.1 e = 0.05

| WER CER | WER CER | WER CER | WER CER

CTC 68 9.3 51 6.9 29.8 4 20 2.5
Houdini | 96.1 12 85.4 9.2 66.5 6.5 46.5 4.5

Groundtruth Transcription:
The fact that a man can recite a poem does not show he remembers
any previous occasion on which he has recited it or read it.

G-Voice transcription of the original example:
The fact that a man can decide a poem does not show he
remembers any previous occasion on which he has work cited or read it.

G-Voice transcription of the adversarial example:

The fact that I can rest I’m just not sure that you heard there is any
previous occasion I am at he has your side it or read it.

Groundtruth Transcription:

Her bearing was graceful and animated she led her son by the hand and
before her walked two maids with wax lights and silver candlesticks.

G-Voice transcription of the original example:
The bearing was graceful an animated she let her son by the hand and
before he walks two maids with wax lights and silver candlesticks.

G-Voice transcription of the adversarial example:
Mary was grateful then admitted she let her son before the walks
to Mays would like slice furnace filter count six.




Takeaways

* By adding margin based constraint together with the task loss, the
attack can be generated against a range of tasks with high confidence

* Targeted attacks seem to be more challenging when dealing with
speech recognition systems than when we consider artificial visual
systems such as pose estimators or semantic segmentation systems

e Adversarial audios also transfer among models



Adversarial Examples for Generative Models

* |dea: Create adversarial inputs that can control the latent space of a
generative model.

* Generate based on adversarial target



Adversarial Examples for Generative Models

e Generative Models.

* An encoder maps a high-dimensional input into lower-dimensional latent representation.
* A decoder maps the latent representation back to a high-dimensional reconstruction.
* Alatent space is an internal representation of the data.

Encoder Decoder
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Adversarial Examples for Generative Models

* An example attack scenario:
 Generative model used as a compression scheme

{2_7,...0.,. e I AAAAN] —?*O

Attacker Compression Decompression

e Attacker’s goal: for the decompressor to reconstruct a different
image from the one that the compressor sees.



Adversarial Examples for Generative Models

" Adversarial
Input
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Adversarial Examples for Generative Models

Adversarial ] [ Latent ]
Input

_,® _]é__ Encoder _,@) DEESCder P Discriminator > (0, 1) é

‘f";"n‘: ﬁiisc

Classifier -
- —= Y
,ﬁ:laﬁs




Adversarial Examples for Generative Models

" Adversarial J [ Latent ]
G ted Output
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Adversarial Examples for Generative Models
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Adversarial Examples for Generative Models

Adversarial Latent Generated
Input Space Output
r ------------------------------- L-—--_I-I-IL- T - :
: /‘Eﬁ {g Decoder C) Discriminator :
_)®_E<\ﬁ:m\z - ﬁjec ) ﬁiisc ;

Classifier .
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[ Optional attacker-trained classifier ] [ Target VAE-GAN ]_

to leverage attacks like FGS J (or other latent generative model)

arg min L(x, %) s.t.0Oracle(Giarg (%)) = 3



Adversarial Examples for Generative Models

| Original Inputs | | Reconstructions |
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{ Adversarial Inputs ] [ Reconstructions

Adversarial Examples for Generative Models




Attacking Deep Reinforcement Learning

N-Attack

Observations ;
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Agent Environments
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Attacking Deep Reinforcement Learning

‘At:taCk first k framesj ‘
(‘ , ) seq- Attacks

Agent Environment dynamics _
{ S »
Actions () 6 0 a 06
L _ .:[_|_| Body mass distribution
@’ ® env- Attacks

act- Attacks

Potential attacks in RL



Adversarial Attacks on Neural Network Policies

action taken: down action taken: noop
original input adversarial input

argmaxvmj(ﬂ,xﬂy)i I

action taken: down

action taken: up
original input adversarial input



A3C: A Deep Policy on Pong

_ Reinforcement learning algorithms:

» Actor — policy network to predict the
action based on each frame

 Critics — value function to predict the
value of each frame, and the action is
chosen to maximize the expected
value

 Actor-critics (A3C) — combine value
function into the policy network to
make prediction




Agent in Action: attack the policy network

Original Frames Adversarial perturbation
injected into every frame



Attacking Deep Reinforcement Learning

obs- Attacks

Observations
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Attacking Deep Reinforcement Learning

obs- Attacks

Observations =
Attack first k framesj
(‘ ! ) seq- Attacks
: R d ‘
' :n] J ewar
nn o I
Agent Environment dynamicy o
Actions
@ - .:l—l_l Body mass distribution
@’ -9 env- Attacks

act- Attacks

Potential attacks in RL



Attacks on dynamic environments

Normal environment Adversarial environment






