Classification and nearest neighbors

D.A. Forsyth UIUC
Main points

• Classification is important
 • what is it
 • takes a feature vector and makes a label
 • where does fv come from? later
 • examples: credit card, doctor, running new code
 • main types of classification
 • binary/multiclass
 • multiclass requires care
 • evaluation
• key issue in classification
 • want to know how well it works on data where you don’t know labels
 • cause that’s what matters
Main points

• There is no guarantee that classification will be perfect
 • for any given problem
 • example:
 • alien, male female from height

• Ideas
 • bayes risk
 • the very best a classifier can do with a given dataset
 • usually very hard to know
 • the decision boundary
How well does a classifier work?

• Binary classifier
 • (1/0; yes/no; sick/well; etc)
 • accuracy
 • fraction of examples that are classified correctly
 • error rate
 • fraction of examples that are classified incorrectly
 • acc>0.5; e<0.5
• other measures
 • false positive rate (rate at which 0->1)
 • false negative rate (rate at which 1->0)
 • true positive rate (rate at which 1->1)
 • true negative rate (rate at which 0->0)
Setup for classification methods

• dataset \((x, y)\)
 • \(x\) are feature vectors, \(y\) are labels
 • for the moment, feature vectors are vectors (i.e. real numbers in each component, same dimension, etc).

• query \(x\)
 • this is something we want to label

• We must:
 • make a classifier from this dataset
 • make an estimate of how well it will work *on future data*
 • where future data is “like” past data
 • there are some formal guarantees but they’re weak
Nearest neighbors

- **Classifier**
 - a query gets the label of the closest labelled example

- **Classifier Issues**
 - how to measure closest?
 - how to find closest?
 - how to improve?

- **Conceptual issues**
 - if we have enough data, and if we can find the nearest neighbor, could be very good
Nearest neighbors

- Practical issues
 - Reading data (surprisingly important nuisance)
 - errors in data
 - funny formats
 - missing data
 - How do we measure accuracy on future data?
 - split dataset into test and train
 - test data - we pretend we don’t know labels and predict
 - train data - these are the examples
 - key idea
 - if we don’t touch the data when we make the classifier we get an unbiased estimate of accuracy/error rate
• Notice - there are nans in this data, ? in file
 • for now, just drop those data items cause we can’t compute distances
 • but we’ll have to get back to this issue
 • indexing trick with goodflag
 • test - train split
eg - 2

- Notice - funny file format - we have to do some ducking and weaving
 - doesn’t work - what’s happening
 - test - train split
Simple cross-validation

• Issue
 • a simple test-train split fails
 • why not split randomly?

• Notice
 • different accuracies with different splits
 • a big test set gives a poor classifier; a small test set gives an inaccurate estimate
 • => average over different small random splits

• Easiest case
 • repeat
 • choose one data item at random; this is test set
 • evaluate; compute accuracy (0% or 100%)
 • average accuracies over many trials
• Notice:
 • leave one out cross-validation
 • the number of splits is a bit silly
• Notice:
 • data problems (two spaces)
 • look at data - different variables have different scales
 • this could be a real problem
K-NN

• Issue
 • why use only one neighbor? you could use many and vote
 • Advantage:
 • pooling data
 • Disadvantage
 • you have to find the neighbors
 • error rate may go up
• **Notice:**
 • data problems (two spaces)
 • is it better?
Scale and dataset

- Looking at seeds features, some have different scales
- what to do?
 - divide each feature by standard deviation (whitening)
 - can help, but not always
• Notice:
 • is it better?
• Notice:
 • you can whiten knn, too
 • is it better?
Question: which is better?

- The estimate of accuracy is not exact
 - it’s the value of a random variable
 - draw different examples in test split and get different numbers
 - this means
 - relying on one accuracy number is very dangerous
 - you need to know at least standard deviation of accuracy
Question: which is better?

- For most cases, the central limit theorem guarantees
 - estimate of accuracy is value of a normal random variable
 - mean of that normal random variable is true accuracy

- **Standard problem:**
 - given IID samples from each of two normal distributions A, B
 - how strong is the evidence that A has larger mean than B?
 - known as a two-sample z-test
Notice:

- we can get extent of improvement by measuring accuracy mean and std
- current code is a bit clumsy
• Notice:
 • we don’t actually have to do all the work by hand - there are packages
 • scikit-learn
An important feature of NN

- You can predict *any label*
 - or even a number
- Regression:
 - Predicting a number (rather than a label) from a feature vector
 - We’ll see a lot of this later
 - Yacht example