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Today’s goal

•Recall: Image autoencoder
• Simple word embeddings
• Encoder decoder for word embeddings
•Attention
• Transformers
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Word embeddings: properties

• Relationships between words correspond to 
difference between vectors. 



Word embeddings: questions

• How big should the embedding space be?  
• Trade-offs like any other machine learning problem – greater capacity versus 

efficiency and overfitting. 

• How do we find W?
• Often as part of a prediction or classification task involving neighboring 

words.  



Learning word embeddings
• First attempt:
• Input data is sets of 5 words from a meaningful 

sentence.  E.g., “one of the best places”.  Modify half of 
them by replacing middle word with a random word.  
“one of function best places”
• W is a map (depending on parameters, Q) from words to 

50 dim’l vectors.  E.g., a look-up table or an RNN.  
• Feed 5 embeddings into a module R to determine ‘valid’ 

or ‘invalid’  
• Optimize over Q to predict better



word2vec
• Predict words using context
• Two versions: CBOW (continuous bag of words) and Skip-gram



CBOW
• Bag of words 
• Gets rid of word order.  Used in discrete case using 

counts of words that appear.

• CBOW 
• Takes vector embeddings of n words before target and n 

words after and adds them (as vectors).  
• Also removes word order, but the vector sum is 

meaningful enough to deduce missing word.



Word2vec – Continuous Bag of Word
• E.g. “The cat sat on floor”
• Window size = 2
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Some interesting results

15



Word analogies
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Skip gram

• Skip gram – alternative to CBOW
• Start with a single word embedding and try to predict the 

surrounding words. 
• Much less well-defined problem, but works better in 

practice (scales better).  



Skip gram
• Map from center word to probability on surrounding words.  One 

input/output unit below.
• There is no activation function on the hidden layer neurons, but the output 

neurons use softmax.



Skip gram example
• Vocabulary of 10,000 words.
• Embedding vectors with 300 features. 
• So the hidden layer is going to be represented by a weight matrix with 

10,000 rows (multiply by vector on the left).



Skip gram/CBOW intuition

• Similar “contexts” (that is, what words are likely to appear around 
them), lead to similar embeddings for two words. 
• One way for the network to output similar context predictions for 

these two words is if the word vectors are similar. So, if two words 
have similar contexts, then the network is motivated to learn similar 
word vectors for these two words! 



Word2vec shortcomings

• Problem:  10,000 words and 300 dim embedding gives a large 
parameter space to learn.  And 10K words is minimal for real 
applications.  

• Slow to train, and need lots of data, particularly to learn uncommon 
words.  



Word2vec improvements: word pairs and phrases

• Idea: Treat common word pairs or phrases as single “words.”  
• E.g., Boston Globe (newspaper) is different from Boston and Globe separately.   

Embed Boston Globe as a single word/phrase.

• Method:  make phrases out of words which occur together often 
relative to the number of individual occurrences. Prefer phrases made 
of infrequent words in order to avoid making phrases out of common 
words like “and the” or “this is”.
• Pros/cons: Increases vocabulary size but decreases training expense.
• Results:  Led to 3 million “words” trained on 100 billion words from a 

Google News dataset.



Word2vec improvements: subsample frequent 
words
• Idea: Subsample frequent words to decrease the number of training 

examples.  
• The probability that we cut the word is related to the word’s frequency.  More 

common words are cut more. 
• Uncommon words (anything < 0.26% of total words) are kept
• E.g., remove some occurrences of “the.” 

• Method: For each word, cut the word with probability related to the 
word’s frequency.
• Benefits: If we have a window size of 10, and we remove a specific instance 

of “the” from our text:
• As we train on the remaining words, “the” will not appear in any of their context 

windows.



Word2vec improvements: selective updates
• Idea: Use “Negative Sampling”, which causes each training sample to 

update only a small percentage of the model’s weights.
• Observation: A “correct output” of the network is a one-hot vector. 

That is, one neuron should output a 1, and all of the other thousands 
of output neurons to output a 0.
• Method: With negative sampling, randomly select just a small 

number of “negative” words (let’s say 5) to update the weights for. (In 
this context, a “negative” word is one for which we want the network 
to output a 0 for). We will also still update the weights for our 
“positive” word.



Word embedding applications
• The use of word representations… has become a 

key “secret sauce” for the success of many NLP 
systems in recent years, across tasks including 
named entity recognition, part-of-speech tagging, 
parsing, and semantic role labeling. (Luong et al.
(2013))

• Learning a good representation on a task A and 
then using it on a task B is one of the major tricks 
in the Deep Learning toolbox. 
• Pretraining, transfer learning, and multi-task learning. 
• Can allow the representation to learn from more than 

one kind of data.

http://nlp.stanford.edu/~lmthang/data/papers/conll13_morpho.pdf


Word embedding applications
• Can learn to map multiple kinds of data into 

a single representation.
• E.g., bilingual English and Mandarin Chinese 

word-embedding as in Socher et al. (2013a).
• Embed as above, but words that are known 

as close translations should be close 
together.
• Words we didn’t know were translations end 

up close together!
• Structures of two languages get pulled into 

alignment.

http://ai.stanford.edu/~wzou/emnlp2013_ZouSocherCerManning.pdf


Word embedding applications
• Can apply to get a joint embedding of words and 

images or other multi-modal data sets.  
• New classes map near similar existing classes:  e.g., 

if ‘cat’ is unknown, cat images map near dog.  



Word Embeddings

• Encoder Decoder  
•Attention
• Transformers
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Encoder-Decoder
• RNN: input sequence is transformed into 

output sequence in a one-to-one fashion.

• Goal: Develop an architecture capable of generating 
contextually appropriate, arbitrary length, output sequences
• Applications: 
• Machine translation, 
• Summarization, 
• Question answering,
• Dialogue modeling.



Simple recurrent neural network illustrated as 
a feed-forward network

Most significant change: new set of weights, U
• connect the hidden layer from the previous time step to the current hidden layer. 
• determine how the network should make use of past context in calculating the output 

for the current input.

ℎ! = g(Uℎ!"#+W𝑥!)

𝑦! = f(Vℎ!)
𝑦! = softmax(Vℎ!)



Simple-RNN abstraction

y2y1 y3



RNN Applications 

• Language Modeling 

• Sequence Classification 
(Sentiment, Topic)  

• Sequence to Sequence



Sentence Completion using an RNN

• Trained Neural Language Model can be used to generate novel sequences 
• Or to complete a given sequence (until end of sentence token <\s> is generated)

ℎ' = g(ℎ'+,+W𝑥')

𝑦' = softmax(Vℎ')



Extending (autoregressive) generation to Machine 
Translation

• Build an RNN language model on the concatenation of source 
and target 

• Training data are parallel text  e.g., English / French

there lived a hobbit       vivait un hobbit
……..

there lived a hobbit <\s> vivait un hobbit <\s>
……..

word generated at each time step is 
conditioned on word from previous step.



Extending (autoregressive) generation to Machine 
Translation

• Translation 
as Sentence 
Completion !



(simple) Encoder Decoder Networks

• Encoder generates a contextualized representation of the input (last state).
• Decoder takes that state and autoregressively generates a sequence of outputs

Limiting design 
choices
• E and D assumed to 

have the same 
internal structure 
(here RNNs)

• Final state of the E is 
the only context 
available to D

• this context is only 
available to D as its 
initial hidden state. 



h1

h1

h2

h2

hn

hm

General Encoder Decoder Networks 
Abstracting away from these choices
1. Encoder: accepts an input sequence, x1:n and 

generates a corresponding sequence of 
contextualized representations, h1:n

2. Context vector c:  function of h1:n and 
conveys the essence of the input to the 
decoder.

3. Decoder: accepts c as input and generates 
an arbitrary length sequence of hidden 
states h1:m from which a corresponding 
sequence of output states y1:m can be 
obtained.



Popular architectural choices: Encoder
Widely used encoder 
design: stacked Bi-LSTMs 
• Contextualized 

representations for each 
time step: hidden states 
from top layers from the 
forward and backward 
passes



Decoder Basic Design

Last hidden 
state of the 
encoder

First hidden state 
of the decoder

z1 z2

• produce an output sequence 
an element at a time

(Vℎ𝑑,)



z1 z2

Decoder Design
Enhancement

Context available at each 
step of decoding



z1 z2

Decoder: How output y is chosen

• Sample soft-max distribution (OK for generating 
novel output, not OK for e.g. MT or Summ)
• Most likely output (doesn’t guarantee individual 

choices being made make sense together)
For sequence labeling we used 
Viterbi – here not possible L



• 4 most likely  “words” decoded from initial state
• Feed each of those in decoder and keep most likely 4 

sequences of two words
• Feed most recent word in decoder and keep most likely 4 

sequences of three words …….
• When EOS is generated. Stop sequence and reduce Beam by 1



Word Embeddings

• Encoder Decoder  
•Attention
• Transformers
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Flexible context: Attention
Context vector c:  function of 
h1:n and conveys the essence of 
the input to the decoder.

h1

h1

h2

h2

hn

hm
Flexible?
• Different for each hi

• Flexibly combining the hj



• Replace static context vector with dynamic ci
• derived from the encoder hidden states at 

each point i during decoding

Attention (1): dynamically derived context

Ideas: 
• should be a linear 

combination of those 
states 

• should depend on ?



• Compute a vector of scores that capture 
the relevance of each encoder hidden 
state to the decoder state

Attention (2): computing ci

• Just the similarity

• Give network the ability to learn which aspects of 
similarity between the decoder and encoder states are 
important to the current application.



• Create vector of weights  by normalizing 
scores

Attention (3): computing ci
From scores to weights

• Goal achieved: compute a fixed-length context vector for the 
current decoder state by taking a weighted average over all the 
encoder hidden states.



Attention: Summary

Encoder

Decoder



Word embeddings

• Encoder Decoder  
•Attention
• Transformers (self-attention)
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Transformers (Attention is all you need 2017)

• Just an introduction: These are two valuable resources to 
learn more details on the architecture and implementation



• Will only 
look at the 
ENCODER(s) 
part in detail

High-level architecture



The encoders are all identical in structure 
(yet they do not share weights). Each one 
is broken down into two sub-layers

helps the encoder look at other 
words in the input sentence as it 
encodes a specific word.

outputs of the self-attention are fed to 
a feed-forward neural network. The 
exact same one is independently 
applied to each position.



Key property of 
Transformer: word in 
each position flows 
through its own path in 
the encoder. 
• There are 

dependencies 
between these paths 
in the self-attention 
layer. 
• Feed-forward layer 

does not have those 
dependencies => 
various paths can be 
executed in parallel !

Word embeddings



Visually clearer on 
two words

Word embeddings

• dependencies in 
self-attention layer. 
• No dependencies in 

Feed-forward layer 



Self-Attention

Step1: create three vectors 
from each of the encoder’s 
input vectors: 
Query, a Key, Value (typically 
smaller dimension). 
by multiplying the 
embedding by three matrices 
that we trained during the 
training process.

While processing each word it allows to look at other positions in the 
input sequence for clues to build a better encoding for this word.



Self-Attention

Step 2: calculate a score (like 
we have seen for regular 
attention!) how much focus to 
place on other parts of the 
input sentence as we encode a 
word at a certain position.
Take dot product of the query
vector with the key vector of 
the respective word we’re 
scoring. 

E.g., Processing the self-attention for word “Thinking” in position #1, the 
first score would be the dot product of q1 and k1. The second score would 
be the dot product of q1 and k2.



Self Attention
• Step 3 divide scores by 

the square root of the 
dimension of the key 
vectors  (more stable 
gradients). 
• Step 4 pass result 

through a softmax
operation. (all positive 
and add up to 1)

Intuition: softmax score determines how much each word will be 
expressed at this position. 



Self Attention
• Step6 : sum up the weighted 

value vectors. This produces 
the output of the self-
attention layer at this position

More details:
• What we have seen for a word is 

done for all words (using matrices) 
• Need to encode position of words
• And improved using a mechanism 

called “multi-headed” attention
(kind of like multiple filters for CNN)
see 
https://jalammar.github.io/illustrated
-transformer/

https://jalammar.github.io/illustrated-transformer/


Multiple heads

1. It expands the 
model’s ability to 
focus on different 
positions.

2. It gives the 
attention layer 
multiple 
“representation 
subspaces”



The Decoder Side
• Relies on most of the concepts on the encoder side



Add and Normalize 

In order to regulate the 
computation, this is a normalization 
layer so that each feature (column) 
have the same average and 
deviation. 



The complete transformer

The encoder-
decoder 
attention is just 
like self 
attention, except 
it uses K, V from 
the top of 
encoder output, 
and its own Q



Transformer Results



Labs

• Generate word embeddings with BOW for spam classification


