
CS 307 Modeling and Learning in
Data Science

1

Today’s goal

•Recall: Image autoencoder
• Simple word embeddings
• Encoder decoder for word embeddings
•Attention
• Transformers

2

Word embeddings: properties

• Relationships between words correspond to
difference between vectors.

Word embeddings: questions

• How big should the embedding space be?
• Trade-offs like any other machine learning problem – greater capacity versus

efficiency and overfitting.

• How do we find W?
• Often as part of a prediction or classification task involving neighboring

words.

Learning word embeddings
• First attempt:
• Input data is sets of 5 words from a meaningful

sentence. E.g., “one of the best places”. Modify half of
them by replacing middle word with a random word.
“one of function best places”
• W is a map (depending on parameters, Q) from words to

50 dim’l vectors. E.g., a look-up table or an RNN.
• Feed 5 embeddings into a module R to determine ‘valid’

or ‘invalid’
• Optimize over Q to predict better

word2vec
• Predict words using context
• Two versions: CBOW (continuous bag of words) and Skip-gram

CBOW
• Bag of words
• Gets rid of word order. Used in discrete case using

counts of words that appear.

• CBOW
• Takes vector embeddings of n words before target and n

words after and adds them (as vectors).
• Also removes word order, but the vector sum is

meaningful enough to deduce missing word.

Word2vec – Continuous Bag of Word
• E.g. “The cat sat on floor”
• Window size = 2

8

the

cat

on

floor

sat

9

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer𝑊!×#

𝑊!×#

V-dim

V-dim

N-dim

𝑊′#×!

V-dim

N will be the size of word vector

We must learn W and W’

10

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

𝑊
!×#
$
×𝑥%&' = 𝑣%&'

𝑊!×
#$ ×𝑥(

)
= 𝑣(

)

+ !𝑣 =
𝑣!"# +𝑣$%

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

1

0

0

0

0

0

0

…

0

𝑊!×#
$ ×𝑥%&' = 𝑣%&'

2.4

2.6

…

…

1.8

=

11

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

𝑊
!×#
$
×𝑥%&' = 𝑣%&'

𝑊!×
#$ ×𝑥(

)
= 𝑣(

)

+ !𝑣 =
𝑣!"# +𝑣$%

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

0

0

1

0

0

0

0

…

0

𝑊!×#
$ ×𝑥() = 𝑣()

1.8

2.9

…

…

1.9

=

12

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

!𝑦&'(

Output layer𝑊!×#

𝑊!×#

V-dim

V-dim

N-dim

𝑊!×#
* ×'𝑣 = 𝑧

V-dim

N will be the size of word vector

!𝑣

'𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)

13

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

cat

on

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

!𝑦&'(

Output layer𝑊!×#

𝑊!×#

V-dim

V-dim

N-dim

𝑊!×#
* ×'𝑣 = 𝑧

'𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)

V-dim

N will be the size of word vector

!𝑣

0.01

0.02

0.00

0.02

0.01

0.02

0.01

0.7

…

0.00

!𝑦

We would prefer !𝑦 close to !𝑦)"#

14

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

𝑊!×#

𝑊!×#

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

𝑊!×#
$

Contain word’s vectors

𝑊!×#
*

We can consider either W or W’ as the word’s representation. Or even take the average.

Some interesting results

15

Word analogies

16

Skip gram

• Skip gram – alternative to CBOW
• Start with a single word embedding and try to predict the

surrounding words.
• Much less well-defined problem, but works better in

practice (scales better).

Skip gram
• Map from center word to probability on surrounding words. One

input/output unit below.
• There is no activation function on the hidden layer neurons, but the output

neurons use softmax.

Skip gram example
• Vocabulary of 10,000 words.
• Embedding vectors with 300 features.
• So the hidden layer is going to be represented by a weight matrix with

10,000 rows (multiply by vector on the left).

Skip gram/CBOW intuition

• Similar “contexts” (that is, what words are likely to appear around
them), lead to similar embeddings for two words.
• One way for the network to output similar context predictions for

these two words is if the word vectors are similar. So, if two words
have similar contexts, then the network is motivated to learn similar
word vectors for these two words!

Word2vec shortcomings

• Problem: 10,000 words and 300 dim embedding gives a large
parameter space to learn. And 10K words is minimal for real
applications.

• Slow to train, and need lots of data, particularly to learn uncommon
words.

Word2vec improvements: word pairs and phrases

• Idea: Treat common word pairs or phrases as single “words.”
• E.g., Boston Globe (newspaper) is different from Boston and Globe separately.

Embed Boston Globe as a single word/phrase.

• Method: make phrases out of words which occur together often
relative to the number of individual occurrences. Prefer phrases made
of infrequent words in order to avoid making phrases out of common
words like “and the” or “this is”.
• Pros/cons: Increases vocabulary size but decreases training expense.
• Results: Led to 3 million “words” trained on 100 billion words from a

Google News dataset.

Word2vec improvements: subsample frequent
words
• Idea: Subsample frequent words to decrease the number of training

examples.
• The probability that we cut the word is related to the word’s frequency. More

common words are cut more.
• Uncommon words (anything < 0.26% of total words) are kept
• E.g., remove some occurrences of “the.”

• Method: For each word, cut the word with probability related to the
word’s frequency.
• Benefits: If we have a window size of 10, and we remove a specific instance

of “the” from our text:
• As we train on the remaining words, “the” will not appear in any of their context

windows.

Word2vec improvements: selective updates
• Idea: Use “Negative Sampling”, which causes each training sample to

update only a small percentage of the model’s weights.
• Observation: A “correct output” of the network is a one-hot vector.

That is, one neuron should output a 1, and all of the other thousands
of output neurons to output a 0.
• Method: With negative sampling, randomly select just a small

number of “negative” words (let’s say 5) to update the weights for. (In
this context, a “negative” word is one for which we want the network
to output a 0 for). We will also still update the weights for our
“positive” word.

Word embedding applications
• The use of word representations… has become a

key “secret sauce” for the success of many NLP
systems in recent years, across tasks including
named entity recognition, part-of-speech tagging,
parsing, and semantic role labeling. (Luong et al.
(2013))

• Learning a good representation on a task A and
then using it on a task B is one of the major tricks
in the Deep Learning toolbox.
• Pretraining, transfer learning, and multi-task learning.
• Can allow the representation to learn from more than

one kind of data.

http://nlp.stanford.edu/~lmthang/data/papers/conll13_morpho.pdf

Word embedding applications
• Can learn to map multiple kinds of data into

a single representation.
• E.g., bilingual English and Mandarin Chinese

word-embedding as in Socher et al. (2013a).
• Embed as above, but words that are known

as close translations should be close
together.
• Words we didn’t know were translations end

up close together!
• Structures of two languages get pulled into

alignment.

http://ai.stanford.edu/~wzou/emnlp2013_ZouSocherCerManning.pdf

Word embedding applications
• Can apply to get a joint embedding of words and

images or other multi-modal data sets.
• New classes map near similar existing classes: e.g.,

if ‘cat’ is unknown, cat images map near dog.

Word Embeddings

• Encoder Decoder
•Attention
• Transformers

28

Encoder-Decoder
• RNN: input sequence is transformed into

output sequence in a one-to-one fashion.

• Goal: Develop an architecture capable of generating
contextually appropriate, arbitrary length, output sequences
• Applications:
• Machine translation,
• Summarization,
• Question answering,
• Dialogue modeling.

Simple recurrent neural network illustrated as
a feed-forward network

Most significant change: new set of weights, U
• connect the hidden layer from the previous time step to the current hidden layer.
• determine how the network should make use of past context in calculating the output

for the current input.

ℎ! = g(Uℎ!"#+W𝑥!)

𝑦! = f(Vℎ!)
𝑦! = softmax(Vℎ!)

Simple-RNN abstraction

y2y1 y3

RNN Applications

• Language Modeling

• Sequence Classification
(Sentiment, Topic)

• Sequence to Sequence

Sentence Completion using an RNN

• Trained Neural Language Model can be used to generate novel sequences
• Or to complete a given sequence (until end of sentence token <\s> is generated)

ℎ' = g(ℎ'+,+W𝑥')

𝑦' = softmax(Vℎ')

Extending (autoregressive) generation to Machine
Translation

• Build an RNN language model on the concatenation of source
and target

• Training data are parallel text e.g., English / French

there lived a hobbit vivait un hobbit
……..

there lived a hobbit <\s> vivait un hobbit <\s>
……..

word generated at each time step is
conditioned on word from previous step.

Extending (autoregressive) generation to Machine
Translation

• Translation
as Sentence
Completion !

(simple) Encoder Decoder Networks

• Encoder generates a contextualized representation of the input (last state).
• Decoder takes that state and autoregressively generates a sequence of outputs

Limiting design
choices
• E and D assumed to

have the same
internal structure
(here RNNs)

• Final state of the E is
the only context
available to D

• this context is only
available to D as its
initial hidden state.

h1

h1

h2

h2

hn

hm

General Encoder Decoder Networks
Abstracting away from these choices
1. Encoder: accepts an input sequence, x1:n and

generates a corresponding sequence of
contextualized representations, h1:n

2. Context vector c: function of h1:n and
conveys the essence of the input to the
decoder.

3. Decoder: accepts c as input and generates
an arbitrary length sequence of hidden
states h1:m from which a corresponding
sequence of output states y1:m can be
obtained.

Popular architectural choices: Encoder
Widely used encoder
design: stacked Bi-LSTMs
• Contextualized

representations for each
time step: hidden states
from top layers from the
forward and backward
passes

Decoder Basic Design

Last hidden
state of the
encoder

First hidden state
of the decoder

z1 z2

• produce an output sequence
an element at a time

(Vℎ𝑑,)

z1 z2

Decoder Design
Enhancement

Context available at each
step of decoding

z1 z2

Decoder: How output y is chosen

• Sample soft-max distribution (OK for generating
novel output, not OK for e.g. MT or Summ)
• Most likely output (doesn’t guarantee individual

choices being made make sense together)
For sequence labeling we used
Viterbi – here not possible L

• 4 most likely “words” decoded from initial state
• Feed each of those in decoder and keep most likely 4

sequences of two words
• Feed most recent word in decoder and keep most likely 4

sequences of three words …….
• When EOS is generated. Stop sequence and reduce Beam by 1

Word Embeddings

• Encoder Decoder
•Attention
• Transformers

43

Flexible context: Attention
Context vector c: function of
h1:n and conveys the essence of
the input to the decoder.

h1

h1

h2

h2

hn

hm
Flexible?
• Different for each hi

• Flexibly combining the hj

• Replace static context vector with dynamic ci
• derived from the encoder hidden states at

each point i during decoding

Attention (1): dynamically derived context

Ideas:
• should be a linear

combination of those
states

• should depend on ?

• Compute a vector of scores that capture
the relevance of each encoder hidden
state to the decoder state

Attention (2): computing ci

• Just the similarity

• Give network the ability to learn which aspects of
similarity between the decoder and encoder states are
important to the current application.

• Create vector of weights by normalizing
scores

Attention (3): computing ci
From scores to weights

• Goal achieved: compute a fixed-length context vector for the
current decoder state by taking a weighted average over all the
encoder hidden states.

Attention: Summary

Encoder

Decoder

Word embeddings

• Encoder Decoder
•Attention
• Transformers (self-attention)

49

Transformers (Attention is all you need 2017)

• Just an introduction: These are two valuable resources to
learn more details on the architecture and implementation

• Will only
look at the
ENCODER(s)
part in detail

High-level architecture

The encoders are all identical in structure
(yet they do not share weights). Each one
is broken down into two sub-layers

helps the encoder look at other
words in the input sentence as it
encodes a specific word.

outputs of the self-attention are fed to
a feed-forward neural network. The
exact same one is independently
applied to each position.

Key property of
Transformer: word in
each position flows
through its own path in
the encoder.
• There are

dependencies
between these paths
in the self-attention
layer.
• Feed-forward layer

does not have those
dependencies =>
various paths can be
executed in parallel !

Word embeddings

Visually clearer on
two words

Word embeddings

• dependencies in
self-attention layer.
• No dependencies in

Feed-forward layer

Self-Attention

Step1: create three vectors
from each of the encoder’s
input vectors:
Query, a Key, Value (typically
smaller dimension).
by multiplying the
embedding by three matrices
that we trained during the
training process.

While processing each word it allows to look at other positions in the
input sequence for clues to build a better encoding for this word.

Self-Attention

Step 2: calculate a score (like
we have seen for regular
attention!) how much focus to
place on other parts of the
input sentence as we encode a
word at a certain position.
Take dot product of the query
vector with the key vector of
the respective word we’re
scoring.

E.g., Processing the self-attention for word “Thinking” in position #1, the
first score would be the dot product of q1 and k1. The second score would
be the dot product of q1 and k2.

Self Attention
• Step 3 divide scores by

the square root of the
dimension of the key
vectors (more stable
gradients).
• Step 4 pass result

through a softmax
operation. (all positive
and add up to 1)

Intuition: softmax score determines how much each word will be
expressed at this position.

Self Attention
• Step6 : sum up the weighted

value vectors. This produces
the output of the self-
attention layer at this position

More details:
• What we have seen for a word is

done for all words (using matrices)
• Need to encode position of words
• And improved using a mechanism

called “multi-headed” attention
(kind of like multiple filters for CNN)
see
https://jalammar.github.io/illustrated
-transformer/

https://jalammar.github.io/illustrated-transformer/

Multiple heads

1. It expands the
model’s ability to
focus on different
positions.

2. It gives the
attention layer
multiple
“representation
subspaces”

The Decoder Side
• Relies on most of the concepts on the encoder side

Add and Normalize

In order to regulate the
computation, this is a normalization
layer so that each feature (column)
have the same average and
deviation.

The complete transformer

The encoder-
decoder
attention is just
like self
attention, except
it uses K, V from
the top of
encoder output,
and its own Q

Transformer Results

Labs

• Generate word embeddings with BOW for spam classification

