
Bo Li
University of Illinois at Urbana-Champaign

1

CS307: Modeling and Learning in
Data Science

Goal of today’s class

• Recall Sammon mapping, T-SNE, AE
• VAE
• Generative adversarial networks (GANs)

2

Autoencoders
• Autoencoders are designed to reproduce

their input, especially for images.
– Key point is to reproduce the input from a

learned encoding.

Variational Autoencoder (VAE)
• Key idea: make both the encoder and the

decoder probabilistic.
• I.e., the latent variables, z, are drawn from a

probability distribution depending on the
input, X, and the reconstruction is chosen
probabilistically from z.

VAE Encoder
• The encoder takes input and returns parameters

for a probability density (e.g., Gaussian): I.e.,
gives the mean and co-variance matrix.

• We can sample from this distribution to get
random values of the lower-dimensional
representation z.

• Implemented via a neural network: each input x
gives a vector mean and diagonal covariance
matrix that determine the Gaussian density

• Parameters 𝜃 for the NN need to be learned –
need to set up a loss function.

VAE Decoder
• The decoder takes latent variable z and returns

parameters for a distribution. E.g., gives
the mean and variance for each pixel in the
output.

• Reconstruction is produced by sampling.
• Implemented via neural network, the NN

parameters 𝜙 are learned.

VAE loss function

• Loss function for autoencoder: L2 distance
between output and input (or clean input for
denoising case)

• For VAE, we need to learn parameters of two
probability distributions. For a single input, xi, we
maximize the expected value of returning xi or
minimize the expected negative log likelihood.

• This takes expected value wrt z over the current
distribution of the loss

VAE loss function

• Problem: the weights may adjust to memorize
input images via z. I.e., input that we regard as
similar may end up very different in z space.

• We prefer continuous latent representations to
give meaningful parameterizations. E.g., smooth
changes from one digit to another.

• Solution: Try to force to be close to a
standard normal (or some other simple density).

VAE loss function

• For a single data point xi we get the loss function

• The first term promotes recovery of the input.
• The second term keeps the encoding continuous

– the encoding is compared to a fixed p(z)
regardless of the input, which inhibits
memorization.

• With this loss function the VAE can (almost) be
trained using gradient descent on minibatches.

VAE loss function

• For a single data point xi we get the loss
function

• Problem: The expectation would usually be
approximated by choosing samples and
averaging. This is not differentiable wrt 𝜃
and 𝜙.

VAE loss function
• Problem: The expectation would usually be

approximated by choosing samples and
averaging. This is not differentiable wrt 𝜃 and
𝜙.

VAE loss function
• Reparameterization: If z is 𝑁(𝜇 𝑥! , Σ 𝑥!),

then we can sample z using 𝑧 = 𝜇 𝑥! +
√(Σ 𝑥!) 𝜖, where 𝜖 is N(0,1). So we can
draw samples from N(0,1), which doesn’t
depend on the parameters.

VAE generative model

• After training, is close to a standard
normal, N(0,1) – easy to sample.

• Using a sample of z from as input to
sample from gives an approximate
reconstruction of xi, at least in expectation.

• If we sample any z from N(0,1) and use it as input
to to sample from then we can
approximate the entire data distribution p(x).
I.e., we can generate new samples that look like
the input but aren’t in the input.

Autoencoder

As close as possible

NN
Encoder

NN
Decoder

code
NN

Decoder
code

Randomly
generate a vector
as code

Image ?

Autoencoder with 3 fully connected layers

Large à small, learn to compress

Training: model.fit(X,X)
Cost function: Σk=1..N (xk – x’k)2

Auto-encoder

NN
Decodercode

2D code

-1.5 1.5

NN
Decoder

NN
Decoder

Auto-encoder

-1.5 1.5

NN
Encoder

NN
Decoder

code

input output

Auto-encoder

VAE

NN
Encoderinput NN

Decoder output

m1
m2
m3

From a normal
distribution

X

+

Minimize
reconstruction error

ex
p

Minimize

Auto-Encoding Variational Bayes,
https://arxiv.org/abs/1312.6114

σ1

σ2

σ3

e3

e2

e1

ci = exp(σi)ei + mi

Σi=1..3 [exp(σi)−(1+σi)+(mi)2]

c3

c2

c1

This constrains σi approacing 0 is good

Problems of VAE
• It does not really try to simulate real images

NN
Decoder

code

Output As close as
possible

One pixel difference to
the target

Also one pixel
difference to the target

Realistic Fake

VAE treats these the same

Gradual and step-wise generation

NN
Generator

v1

Discri-
minator

v1

Real images:

NN
Generator

v2

Discri-
minator

v2

NN
Generator

v3

Discri-
minator

v3

Generated
images

These are
Binary classifiers

Generative Adversarial Networks
l GAN was first introduced by Ian Goodfellow et al in

2014
l Have been used in generating images, videos, poems,

some simple conversation.
l Note, image processing is easy (all animals can do it),

NLP is hard (only human can do it).
l This co-evolution approach might have far-reaching

implications. Bengio: this may hold the key to making
computers a lot more intelligent.

l Tips for training GAN:
https://github.com/soumith/ganhacks

21

GAN – Learn a discriminator

NN
Generator

v1

Real images
Sampled from
DB:

Discri-
minator

v1
image 1/0 (real or fake)

Something like
Decoder in VAE

Randomly
sample a

vector

1 1 1 1

0 0 0 0

GAN – Learn a generator

Discri-
minator

v1

NN
Generator

v1

Randomly sample
a vector

0.13

Updating the parameters of
generator

The output be classified
as “real” (as close to 1
as possible)

Generator + Discriminator =
a network

Using gradient descent to
update the parameters in the
generator, but fix the
discriminator 1.0

v2

Train
this

Do not
Train
This

They have
Opposite
objectives

Next few images

Traditional mean-squared
Error, averaged, blurry

Last 2 are by deep learning approaches.

Similar to word embedding (DCGAN paper)

256x256 high resolution pictures
by Plug and Play generative network

From natural language to pictures

Deriving GAN

• How to derive and train GAN
• I will avoid the continuous case and stick to

simple explanations.

Maximum Likelihood Estimation
• Give a data distribution Pdata(x)
• We use a distribution PG(x;θ) parameterized by θ to

approximate it
– E.g. PG(x;θ) is a Gaussian Mixture Model, where θ contains means and

variances of the Gaussians.
– We wish to find θ s.t. PG(x;θ) is close to Pdata(x)

• In order to do this, we can sample
{x1,x2, … xm} from Pdata(x)

• The likelihood of generating these
xi’s under PG is

L= Πi=1…m PG(xi; θ)
• Then we can find θ* maximizing the L.

KL (Kullback-Leibler) divergence

• Discrete:
DKL(P||Q) = ΣiP(i)log[P(i)/Q(i)]

• Continuous:
DKL(P||Q) = p(x)log [p(x)/q(x)]

• Explanations:
Entropy: - ΣiP(i)logP(i) - expected code length (also optimal)
Cross Entropy: - ΣiP(i)log Q(i) – expected coding

length using optimal code for Q
DKL= ΣiP(i)log[P(i)/Q(i)] = ΣiP(i)[logP(i) – logQ(i)], extra bits
JSD(P||Q) = ½ DKL(P||M)+ ½ DKL(Q||M), M= ½ (P+Q), symmetric KL

* JSD = Jensen-Shannon Divergency

−∞

∞

Maximum Likelihood Estimation
θ* = arg maxθ Πi=1..mPG(xi; θ) à

arg maxθ log Πi=1..mPG(xi; θ)
= arg maxθ Σi=1..m log PG(xi; θ), {x1,..., xm} sampled from Pdata(x)
= arg maxθ Σi=1..m Pdata(xi) log PG(xi; θ) --- this is cross entropy
≅ arg maxθ Σi=1..m Pdata(xi) log PG(xi; θ) - Σi=1..m Pdata(xi)logPdata(x i)
= arg minθ KL (Pdata(x) || PG(x; θ)) --- this is KL divergence

Note: PG is Gaussian mixture model, finding best θ will still be Gaussians, this
only can generate a few blubs. Thus this above maximum likelihood approach
does not work well.

Next we will introduce GAN that will change PG, not just estimating PG is
parameters We will find best PG , which is more complicated and structured,
to approximate Pdata.

PG(x,θ)

How to compute the
likelihood?

Thus let’s use an NN as PG(x; θ)
Pdata(x)

G

θ

Smaller
dimension

Larger
dimension

Prior
distribution
of z

PG(x) = Integrationz Pprior(z) I[G(z)=x]dz

Basic Idea of GAN
• Generator G

– G is a function, input z, output x
– Given a prior distribution Pprior(z), a probability distribution PG(x) is

defined by function G

• Discriminator D
– D is a function, input x, output scalar
– Evaluate the “difference” between PG(x) and Pdata(x)

• In order for D to find difference between Pdata from PG, we
need a cost function V(G,D):

G*=arg minGmaxDV(G,D)
Note, we are changing distribution G, not just update
its parameters (as in the max likelihood case).

Hard to learn PG by maximum likelihood

Basic Idea G* = arg minGmaxD V(G,D)

V(G1,D) V(G3,D)V(G2,D)

G1 G2 G3

Given a generator G, maxDV(G,D) evaluates the
“difference” between PG and Pdata

Pick JSD function: V = Ex~P_data [log D(x)] + Ex~P_G[log(1-D(x))]

Pick the G s.t. PG is most similar to Pdata

lGiven G, what is the optimal D* maximizing

lGiven x, the optimal D* maximizing is:
f(D) = alogD + blog(1-D) è D*=a/(a+b)

Assuming D(x) can have any value here

MaxDV(G,D), G*=arg minGmaxDV(G,D)

V = Ex~P_data [log D(x)] + Ex~P_G[log(1-D(x))]
= Σ [Pdata(x) log D(x) + PG(x) log(1-D(x)]

Thus: D*(x) = Pdata(x) / (Pdata(x)+PG(x))

V(G1,D)

V(G1,D*1)

“difference” between
PG1 and Pdata

maxDV(G,D), G* = arg minGmaxD V(G,D)

D1*(x) = Pdata(x) / (Pdata(x)+PG_1(x)) D2*(x) = Pdata(x) / (Pdata(x)+PG_2(x))

V(G2,D) V(G3,D)

maxDV(G,D) V = Ex~P_data [log D(x)]
+ Ex~P_G[log(1-D(x))]

maxD V(G,D)
= V(G,D*), where D*(x) = Pdata / (Pdata + PG), and

1-D*(x) = PG / (Pdata + PG)
= Ex~P_data log D*(x) + Ex~P_G log (1-D*(x))
≈ Σ [Pdata (x) log D*(x) + PG(x) log (1-D*(x))]
= -2log2 + 2 JSD(Pdata || PG),

JSD(P||Q) = Jensen-Shannon divergence
= ½ DKL(P||M)+ ½ DKL(Q||M)

where M= ½ (P+Q).
DKL(P||Q) = Σ P(x) log P(x) /Q(x)

Summary:
l Generator G, Discriminator D
l Looking for G* such that

l Given G, maxD V(G,D)
= -2log2 + 2JSD(Pdata(x) || PG(x))

l What is the optimal G? It is G that makes JSD
smallest = 0:

PG(x) = Pdata (x)

V = Ex~P_data [log D(x)]
+ Ex~P_G[log(1-D(x))]

G* = arg minGmaxD V(G,D)

Algorithm

• To find the best G minimizing the loss function L(G):
θG ß θG =−η L(G)/ θG , θG defines G

• Solved by gradient descent. Having max ok. Consider
simple case:

f(x) = max {D1(x), D2（x), D3(x)}

dD1(x)/dx dD2(x)/dx dD3(x)/dx

If Di(x) is the
Max in that region,
then do dDi(x)/dx

L(G), this is the
loss function

G* = arg minGmaxD V(G,D)

D1(x)
D2(x)

D3(x)

Algorithm G* = arg minGmaxD V(G,D)
L(G), this is the
loss function

• Given G0

• Find D*0 maximizing V(G0,D)
V(G0,D0*) is the JS divergence between Pdata(x) and PG0(x)

• θG ß θG −η ΔV(G,D0*) / θG è Obtaining G1 (decrease JSD)

• Find D1* maximizing V(G1,D)
V(G1,D1*) is the JS divergence between Pdata(x) and PG1(x)

• θG ß θG −η ΔV(G,D1*) / θG è Obtaining G2 (decrease JSD)

• And so on …

In practice …

Minimize Cross-entropy
This is what a Binary Classifier do
Output is D(x)

Minimize –log D(x)If x is a positive example
If x is a negative example Minimize –log(1-D(x))

V = Ex~P_data [log D(x)]
+ Ex~P_G[log(1-D(x))]

• Given G, how to compute maxDV(G,D)?
– Sample {x1, … ,xm} from Pdata

– Sample {x*1, … ,x*m} from generator PG

Maximize:
V’ = 1/m Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i))

Positive example
D must accept

Negative example
D must reject

{x1,x2, … xm} from Pdata (x)

D is a binary classifier (can be deep) with parameters θd

Positive examples

Negative examples

Maximize

Minimize L = - V’

Minimize Cross-entropy

Binary Classifier

Output is f(x)

Minimize –log f(x)If x is a positive example

If x is a negative example Minimize –log(1-f(x))

{x*1,x*2, … x*m} from PG(x)

V’ = Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i))

or

• In each training iteration
– Sample m examples {x1,x2, … xm} from data distribution

Pdata(x)
– Sample m noise samples {z1, … , zm} from a simple prior

Pprior(z)
– Obtain generated data {x*1, … , x*m}, x*i=G(zi)
– Update discriminator parameters θd to maximize

• V’ ≈ 1/m Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i))

• θdß θd + ηΔV’(θd) (gradient ascent)

Algorithm

Repeat
k times

Learning D

Learning G

Initialize θd for D and θg for G
Can only find lower bound
of JSD or maxDV(G,D)

Only
Once

- Simple another m noise samples {z1,z2, … zm} from the
prior Pprior(z)，G(zi)=x*i

- Update generator parameters θg to minimize
V’= 1/mΣi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i))
θgß θg − ηΔV’(θg) (gradient descent)

Objective Function for Generator
in Real Implementation

Real implementation:
label x from PG as positive

Training slow at the beginning

V = Ex~P_data [log D(x)

+ Ex~P_G[log(1-D(x))]

V = Ex~P_G [− log (D(x))]

Evaluating JS divergence

Martin Arjovsky, Léon Bottou, Towards Principled Methods for Training
Generative Adversarial Networks, 2017, arXiv preprint

Discriminator is too strong: for all three
Generators, JSD = 0

Evaluating JS divergence

• JS divergence estimated by discriminator
telling little information

Weak Generator Strong Generator

Discriminator

Reason 1. Approximate by sampling

1 for all positive examples 0 for all negative examples

= 0
log 2 when Pdata and PG differ

completely

Weaken your discriminator?

Can weak discriminator
compute JS divergence?

V = Ex~P_data [log D(x)] + Ex~P_G[log(1-D(x))]
= 1/m Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i))

maxDV(G,D) = -2log2 + 2 JSD(Pdata || PG)

One simple solution: add noise

• Add some artificial noise to the inputs of
discriminator

• Make the labels noisy for the discriminator

Pdata(x) and PG(x) have
some overlap

Discriminator cannot perfectly separate real and generated
data

Noises need to decay over time

Mode Collapse

Data
Distribution

Generated
Distribution

Sometimes, this is hard to tell since
one sees only what’s generated, but not what’s missed.

Converge to same faces

Mode Collapse Example
8 Gaussian distributions:

What we want …

In reality …

Pdata

Experimental Results
• Approximate a mixture of Gaussians by single

mixture

Text to Image, by conditional GAN

Text to Image
- Results

"red flower with
black center"

From CY Lee lecture

WGAN Background

• We have seen that JSD does not give GAN a
smooth and continuous improvement curve.

• We would like to find another distance which
gives that.

• This is the Wasserstein Distance or earth
mover’s distance.

Earth Mover’s Distance
• Considering one distribution P as a pile of earth (total amount

of earth is 1), and another distribution Q (another pile of
earth) as the target

• The “earth mover’s distance” or “Wasserstein Distance” is the
average distance the earth mover has to move the earth in an
optimal plan.

d

Earth Mover’s Distance: best plan to
move

P

Q

JS vs Earth Mover’s Distance

PG_50…… ……

d50

W(PG_0, Pdata)=d0

d0 d100

PG_0 Pdata PG_100 PdataPdata

JS(PG_0, Pdata) = log2 JS(PG_50, Pdata) = log2 JS(PG_100, Pdata) = 0

W(PG_100, Pdata)=0W(PG_50, Pdata)=d50

Explaining WGAN

• Let W be the Wasserstein distance.
W(Pdata, PG) = maxD is 1-Lipschitz[Ex~P_data D(x) – Ex~P_G D(x)]

Where a function f is a
k-Lipschitz function if

||f(x1) – f(x2)|| ≤ k||x1 – x2 ||

How to guarantee this?
Weight clipping: for all
parameter updates, if w>c
Then w=c, if w<-c, then w=-c. WGAN will provide gradient to

push PG towards Pdata

Blue: D(x) for original GAN
Green: D(x) for WGAN

Earth Mover Distance Examples:
Multi-layer perceptron

Lab this week

• T-SNE plots on MNIST, ex.19.2
• Next week: train a simple AE on MNIST (will

upload a pdf doc for the AE architecture)

63

