CS307: Modeling and Learning in Data Science

Bo Li

University of Illinois at Urbana-Champaign

Goal of today's class

- Recall Sammon mapping, T-SNE, AE
- VAE
- Generative adversarial networks (GANs)

Autoencoders

- Autoencoders are designed to reproduce their input, especially for images.
 - Key point is to reproduce the input from a learned encoding.

Variational Autoencoder (VAE)

- Key idea: make both the encoder and the decoder probabilistic.
- I.e., the latent variables, z, are drawn from a probability distribution depending on the input, X, and the reconstruction is chosen probabilistically from z.

VAE Encoder

- The encoder takes input and returns parameters for a probability density (e.g., Gaussian): I.e., $q_{\theta}(z \mid x)$ gives the mean and co-variance matrix.
- We can sample from this distribution to get random values of the lower-dimensional representation *z*.
- Implemented via a neural network: each input x gives a vector mean and diagonal covariance matrix that determine the Gaussian density $q_{\theta}(z \mid x)$
- Parameters θ for the NN need to be learned need to set up a loss function.

VAE Decoder

- The decoder takes latent variable z and returns parameters for a distribution. E.g., $p_{\phi}(x|z)$ gives the mean and variance for each pixel in the output.
- Reconstruction \tilde{x} is produced by sampling.
- Implemented via neural network, the NN parameters ϕ are learned.

- Loss function for autoencoder: L₂ distance between output and input (or clean input for denoising case)
- For VAE, we need to learn parameters of two probability distributions. For a single input, x_i, we maximize the expected value of returning x_i or minimize the expected negative log likelihood.

 $-\mathbb{E}_{z\sim q_{ heta}(z\mid x_i)}[\log p_{\phi}(x_i\mid z)]$

This takes expected value wrt z over the current distribution q_θ(z|x_i) of the loss - log p_φ(x_i|z)

- **Problem:** the weights may adjust to memorize input images via *z*. I.e., input that we regard as similar may end up very different in *z* space.
- We prefer continuous latent representations to give meaningful parameterizations. E.g., smooth changes from one digit to another.
- Solution: Try to force $q_{\theta}(z|x_i)$ to be close to a standard normal (or some other simple density).

• For a single data point x_i we get the loss function

 $l_i(heta,\phi) = -\mathbb{E}_{z \sim q_{ heta}(z \mid x_i)}[\log p_{\phi}(x_i \mid z)] + \mathbb{KL}(q_{ heta}(z \mid x_i) \mid\mid p(z))$

- The first term promotes recovery of the input.
- The second term keeps the encoding continuous – the encoding is compared to a fixed p(z) regardless of the input, which inhibits memorization.
- With this loss function the VAE can (almost) be trained using gradient descent on minibatches.

For a single data point x_i we get the loss function

 $l_i(heta,\phi) = -\mathbb{E}_{z\sim q_ heta(z|x_i)}[\log p_\phi(x_i\mid z)] + \mathbb{KL}(q_ heta(z\mid x_i)\mid\mid p(z)))$

• **Problem:** The expectation would usually be approximated by choosing samples and averaging. This is not differentiable wrt θ and ϕ .

• **Problem:** The expectation would usually be approximated by choosing samples and averaging. This is not differentiable wrt θ and ϕ .

• **Reparameterization:** If z is $N(\mu(x_i), \Sigma(x_i))$, then we can sample z using $z = \mu(x_i) + \sqrt{(\Sigma(x_i))} \epsilon$, where ϵ is N(0,1). So we can draw samples from N(0,1), which doesn't depend on the parameters.

VAE generative model

- After training, q_θ(z|x_i) is close to a standard normal, N(0,1) easy to sample.
- Using a sample of z from $q_{\theta}(z|x_i)$ as input to sample from $p_{\phi}(x|z)$ gives an approximate reconstruction of x_i , at least in expectation.
- If we sample any z from N(0,1) and use it as input to to sample from p_{\u03c6}(x|z) then we can approximate the entire data distribution p(x).
 I.e., we can generate new samples that look like the input but aren't in the input.

Autoencoder

As close as possible

Randomly generate a vector as code

Autoencoder with 3 fully connected layers

Auto-encoder

Auto-encoder

Auto-encoder

Problems of VAE

• It does not really try to simulate real images

VAE treats these the same

Gradual and step-wise generation

Generative Adversarial Networks

- GAN was first introduced by Ian Goodfellow et al in 2014
- Have been used in generating images, videos, poems, some simple conversation.
- Note, image processing is easy (all animals can do it), NLP is hard (only human can do it).
- This co-evolution approach might have far-reaching implications. Bengio: this may hold the key to making computers a lot more intelligent.
- Tips for training GAN: https://github.com/soumith/ganhacks

GAN – Learn a discriminator

GAN – Learn a generator

Updating the parameters of generator

The output be classified as "real" (as close to 1 as possible)

Generator + Discriminator = a network

Using gradient descent to update the parameters in the generator, but fix the discriminator

Next few images

Next Video Frame Prediction

Single Image Super-Resolution

(Ledig et al 2016)

Last 2 are by deep learning approaches.

Image to Image Translation

DCGANs for LSUN Bedrooms

(Radford et al 2015)

Similar to word embedding (DCGAN paper)

Vector Space Arithmetic

Man with glasses

Man V

Woman

Woman with Glasses

(Radford et al, 2015)

256x256 high resolution pictures by Plug and Play generative network

PPGN Samples

From natural language to pictures

PPGN for caption to image

oranges on a table next to a liquor bottle

(Nguyen et al 2016)

Deriving GAN

- How to derive and train GAN
- I will avoid the continuous case and stick to simple explanations.

Maximum Likelihood Estimation

- Give a data distribution P_{data}(x)
- We use a distribution P_G(x;θ) parameterized by θ to approximate it
 - E.g. $P_G(x;\theta)$ is a Gaussian Mixture Model, where θ contains means and variances of the Gaussians.
 - We wish to find θ s.t. $P_G(x;\theta)$ is close to $P_{data}(x)$
- In order to do this, we can sample
 {x¹,x², ... x^m} from P_{data}(x)
- The likelihood of generating these xⁱ's under P_G is

 $L=\Pi_{i=1...m} P_G(x^i; \theta)$

• Then we can find θ^* maximizing the L.

KL (Kullback-Leibler) divergence

• Discrete:

 $D_{KL}(P \mid \mid Q) = \Sigma_i P(i) \log[P(i)/Q(i)]$

- Continuous: $D_{KL}(P||Q) = \int_{-\infty}^{\infty} p(x)\log [p(x)/q(x)]$
- Explanations:

Maximum Likelihood Estimation

$$\begin{array}{l} \theta^{*} = \arg \max_{\theta} \Pi_{i=1..m} P_{G}(x^{i}; \theta) \xrightarrow{} \\ \text{arg } \max_{\theta} \log \Pi_{i=1..m} P_{G}(x^{i}; \theta) \\ = \arg \max_{\theta} \Sigma_{i=1..m} \log P_{G}(x^{i}; \theta), \ \{x^{1}, ..., x^{m}\} \text{ sampled } \text{from } P_{data}(x) \\ = \arg \max_{\theta} \Sigma_{i=1..m} P_{data}(x^{i}) \log P_{G}(x^{i}; \theta) \quad --- \text{ this is cross entropy} \\ \cong \arg \max_{\theta} \Sigma_{i=1..m} P_{data}(x^{i}) \log P_{G}(x^{i}; \theta) - \Sigma_{i=1..m} P_{data}(x^{i}) \log P_{data}(x^{i}) \\ = \arg \min_{\theta} \text{KL} \left(P_{data}(x) \mid \mid P_{G}(x; \theta)\right) \quad --- \text{ this is KL divergence} \end{array}$$

Note: P_G is Gaussian mixture model, finding best θ will still be Gaussians, this only can generate a few blubs. Thus this above maximum likelihood approach does not work well.

Next we will introduce GAN that will change P_G , not just estimating $P_{G is}$ parameters We will find best P_G , which is more complicated and structured, to approximate P_{data} .

Thus let's use an NN as $P_G(x; \theta)$

 $P_G(x) = Integration_z P_{prior}(z) I_{[G(z)=x]}dz$

Basic Idea of GAN

Generator G

Hard to learn P_G by maximum likelihood

- G is a function, input z, output x
- Given a prior distribution $P_{prior}(z)$, a probability distribution $P_G(x)$ is defined by function G
- Discriminator D
 - D is a function, input x, output scalar
 - Evaluate the "difference" between $P_G(x)$ and $P_{data}(x)$
- In order for D to find difference between P_{data} from P_G, we need a cost function V(G,D):

 $G^* = \arg \min_G \max_D V(G,D)$

Note, we are changing distribution G, not just update its parameters (as in the max likelihood case).

Basic Idea

Pick JSD function: V = $E_{x \sim P_{data}} [log D(x)] + E_{x \sim P_{G}} [log(1-D(x))]$

Given a generator G, $max_DV(G,D)$ evaluates the "difference" between P_G and P_{data}

Pick the G s.t. P_G is most similar to P_{data}

$Max_{D}V(G,D)$, $G^*=arg min_{G}max_{D}V(G,D)$

• Given G, what is the optimal D* maximizing

$$V = E_{x \sim P_data} [log D(x)] + E_{x \sim P_G}[log(1-D(x))]$$

= $\Sigma [P_{data}(x) log D(x) + P_G(x) log(1-D(x))]$

Thus:
$$D^*(x) = P_{data}(x) / (P_{data}(x)+P_G(x))$$

Assuming D(x) can have any value here

• Given x, the optimal D* maximizing is: $f(D) = alogD + blog(1-D) \rightarrow D^*=a/(a+b)$

$\max_{D} V(G,D)$, G* = arg min_Gmax_D V(G,D)

$max_{D}V(G,D)$

$$V = E_{x \sim P_{data}} [log D(x)] + E_{x \sim P_{G}} [log(1-D(x))]$$

$$\begin{array}{l} {{\max }_{D} \; V(G,D)} \\ = \; V(G,D^{*}), \;\; where \; D^{*}(x) = P_{data} \, / \, (P_{data} + P_{G}), \; and \\ 1 - D^{*}(x) = P_{G} \, / \, (P_{data} + P_{G}) \\ = \; E_{x \sim P_data} \; log \; D^{*}(x) + E_{x \sim P_G} \; log \; (1 - D^{*}(x)) \\ \approx \; \Sigma \; [\; P_{data} \; (x) \; log \; D^{*}(x) + P_{G}(x) \; log \; (1 - D^{*}(x)) \;] \\ = \; -2log2 \, + \, 2 \; JSD(P_{data} \; || \; P_{G} \;), \end{array}$$

$$\begin{split} JSD(P||Q) &= Jensen-Shannon \ divergence \\ &= \frac{1}{2} \ D_{KL}(P||M) + \frac{1}{2} \ D_{KL}(Q||M) \\ \text{where } M &= \frac{1}{2} \ (P+Q). \\ D_{KL}(P||Q) &= \Sigma \ P(x) \ \text{log } P(x) \ /Q(x) \end{split}$$

Summary:

$$V = E_{x \sim P_{data}} [log D(x)] + E_{x \sim P_{G}} [log(1-D(x))]$$

- Generator G, Discriminator D
- Looking for G* such that

 $G^* = \arg \min_G \max_D V(G,D)$

• Given G, $max_D V(G,D)$

 $= -2\log 2 + 2JSD(P_{data}(x) || P_{G}(x))$

What is the optimal G? It is G that makes JSD smallest = 0:

 $P_{G}(x) = P_{data}(x)$

Algorithm $G^* = \arg \min_G \max_D V(G,D)$

L(G), this is the loss function

- To find the best G minimizing the loss function L(G): $\theta_G \leftarrow \theta_G = -\eta \partial L(G) / \partial \theta_G \theta_G$ defines G
- Solved by gradient descent. Having max ok. Consider simple case:

 $f(x) = \max \{D_1(x), D_2(x), D_3(x)\}$

df(x)/dx =? If D_i(x) is the Max in that region, then do dD_i(x)/dx

Algorithm

- Given G₀
- Find D*₀ maximizing V(G₀,D)

 $V(G_0, D_0^*)$ is the JS divergence between $P_{data}(x)$ and $P_{G0}(x)$

- $\theta_{G} \leftarrow \theta_{G} \eta \Delta V(G, D_{0}^{*}) / \theta_{G} \rightarrow Obtaining G_{1}$ (decrease JSD)
- Find D₁* maximizing V(G₁,D)
 V(G₁,D₁*) is the JS divergence between P_{data}(x) and P_{G1}(x)
- $\theta_{G} \leftarrow \theta_{G} \eta \Delta V(G, D_{1}^{*}) / \theta_{G} \rightarrow Obtaining G_{2}$ (decrease JSD)
- And so on ...

In practice ...

$$V = E_{x \sim P_{data}} [log D(x)] + E_{x \sim P_{G}} [log(1-D(x))]$$

- Given G, how to compute max_DV(G,D)?
 - Sample {x¹, ... ,x^m} from P_{data}
 - Sample $\{x^{*1}, \dots, x^{*m}\}$ from generator P_G

Maximize:

D is a binary classifier (can be deep) with parameters θ_d

{x¹,x², ... x^m} from
$$P_{data}(x) \implies$$
 Positive examples
{x^{*1},x^{*2}, ... x^{*m}} from $P_G(x) \implies$ Negative examples

Minimize L = -V'

or

Maximize
$$V' = \sum_{i=1..m} \log D(x^i) + 1/m \sum_{i=1..m} \log(1-D(x^{*i}))$$

<u>Algorithm</u>

Initialize θ_d for D and θ_a for G

• In each training iteration

Can only find lower bound of JSD or max_DV(G,D)

- Sample m examples $\{x^1, x^2, ..., x^m\}$ from data distribution $P_{data}(x)$
- Sample m noise samples {z¹, ..., z^m} from a simple prior
 P_{prior}(z)
- Obtain generated data $\{x^{*1}, \dots, x^{*m}\}, x^{*i}=G(z^i)$
- Update discriminator parameters θ_d to maximize
 - V' $\approx 1/m \Sigma_{i=1..m} \log D(x^i) + 1/m \Sigma_{i=1..m} \log(1-D(x^{*i}))$
 - $\theta_d \leftarrow \theta_d + \eta \Delta V'(\theta_d)$ (gradient ascent)

Learning G

Learning D

Repeat

k times

- Simple another m noise samples $\{z^1,z^2,\,...\,\,z^m\}$ from the prior $\mathsf{P}_{prior}(z)$, $G(z^i){=}x^{*i}$
- Update generator parameters θ_g to minimize $V' = 1/m\Sigma_{i=1..m} \log D(x^i) + 1/m \Sigma_{i=1..m} \log(1-D(x^{*i}))$ $\theta_g \leftarrow \theta_g - \eta \Delta V'(\theta_g)$ (gradient descent)

Objective Function for Generator in Real Implementation

 $V = E_{x \sim P_{data}} [log D(x) + E_{x \sim P_{G}} [log(1-D(x))]$

Training slow at the beginning

$$V = E_{x \sim P_G} [- \log (D(x))]$$

Real implementation: label x from P_G as positive

Evaluating JS divergence

10¹

10⁰

10⁻¹

10⁻²

10⁻³

10-4

10-5

10-6

10-7

Cross-entropy

Discriminator is too strong: for all three

500

Generators, JSD = 0Discriminator's accuracy Discriminator's error 1.0After 1 epoch After 1 epoch After 10 epochs After 10 epochs After 25 epochs 0.9 After 25 epochs 0.8Accuracy 0.70.60.50.4 L 500 3000 1004001000 1500 2000 2500 3500 4000 200300 Training iterations Training iterations

Martin Arjovsky, Léon Bottou, Towards Principled Methods for Training Generative Adversarial Networks, 2017, arXiv preprint

Evaluating JS divergence

• JS divergence estimated by discriminator telling little information

Weak Generator

Strong Generator

Discriminator

1 for all positive examples

0 for all negative examples

0

 $V = E_{x \sim P_data} [log D(x)] + E_{x \sim P_G}[log(1-D(x))]$ $= 1/m \Sigma_{i=1..m} logD(x^{i}) + 1/m \Sigma_{i=1..m} log(1-D(x^{*i}))$

$$max_{D}V(G,D) = -2log2 + 2 JSD(P_{data} || P_{G})$$

log 2 when P_{data} and P_G differ completely

Reason 1. Approximate by sampling

Weaken your discriminator?

Can weak discriminator compute JS divergence?

One simple solution: add noise

- Add some artificial noise to the inputs of discriminator
- Make the labels noisy for the discriminator

Discriminator cannot perfectly separate real and generated data

$P_{data}(x)$ and $P_{G}(x)$ have some overlap

Noises need to decay over time

Mode Collapse

Converge to same faces

Distribution

Sometimes, this is hard to tell since one sees only what's generated, but not what's missed.

Mode Collapse Example

8 Gaussian distributions:

What we want ...

Step 0

Step 5k

Step 10k

Step 15k

Step 20k

In reality ...

Experimental Results

Approximate a mixture of Gaussians by single mixture

train \setminus test	KL	KL-rev	JS	Jeffrey	Pearson
KL	0.2808	0.3423	0.1314	0.5447	0.7345
KL-rev	0.3518	0.2414	0.1228	0.5794	1.3974
JS	0.2871	0.2760	0.1210	0.5260	0.92160
Jeffrey	0.2869	0.2975	0.1247	0.5236	0.8849
Pearson	0.2970	0.5466	0.1665	0.7085	0.648

Text to Image, by conditional GAN

Caption	Image		
a pitcher is about to throw the ball to the batter			
a group of people on skis stand in the snow			
a man in a wet suit riding a surfboard on a wave			

Text to Image - Results

"red flower with black center"

From CY Lee lecture

Caption	Image				
this flower has white petals and a yellow stamen					
the center is yellow surrounded by wavy dark purple petals					
this flower has lots of small round pink petals					

WGAN Background

- We have seen that JSD does not give GAN a smooth and continuous improvement curve.
- We would like to find another distance which gives that.
- This is the Wasserstein Distance or earth mover's distance.

Earth Mover's Distance

- Considering one distribution P as a pile of earth (total amount of earth is 1), and another distribution Q (another pile of earth) as the target
- The "earth mover's distance" or "Wasserstein Distance" is the average distance the earth mover has to move the earth in an optimal plan.

Earth Mover's Distance: best plan to move

JS vs Earth Mover's Distance

 $JS(P_{G_0}, P_{data}) = log2$ $JS(P_{G_{50}}, P_{data}) = log2$ $JS(P_{G_{100}}, P_{data}) = 0$

 $W(P_{G_0}, P_{data}) = d_0$ $W(P_{G_{50}}, P_{data}) = d_{50}$ $W(P_{G_{100}}, P_{data}) = 0$

Explaining WGAN

• Let W be the Wasserstein distance. $W(P_{data}, P_G) = \max_{D \text{ is 1-Lipschitz}} [E_{x^{\sim}P_{data}} D(x) - E_{x^{\sim}P_{G}} D(x)]$

Where a function f is a k-Lipschitz function if

 $||f(x_1) - f(x_2)|| \le k ||x_1 - x_2||$

How to guarantee this? Weight clipping: for all parameter updates, if w>c Then w=c, if w<-c, then w=-c.

Earth Mover Distance Examples:

Lab this week

- T-SNE plots on MNIST, ex.19.2
- Next week: train a simple AE on MNIST (will upload a pdf doc for the AE architecture)