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CS307: Modeling and Learning in
Data Science



Goal of today’s class

• Recall Sammon mapping, T-SNE, AE
• VAE
• Generative adversarial networks (GANs)
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Autoencoders
• Autoencoders are designed to reproduce 

their input, especially for images.  
– Key point is to reproduce the input from a 

learned encoding.  



Variational Autoencoder (VAE)
• Key idea:  make both the encoder and the 

decoder probabilistic.
• I.e., the latent variables, z, are drawn from a 

probability distribution depending on the 
input, X, and the reconstruction is chosen 
probabilistically from z.  



VAE Encoder
• The encoder takes input and returns parameters

for a probability density (e.g., Gaussian): I.e.,            
gives the mean and co-variance matrix.  

• We can sample from this distribution to get 
random values of the lower-dimensional 
representation z.

• Implemented via a neural network:  each input x
gives a vector mean and diagonal covariance 
matrix that determine the Gaussian density

• Parameters 𝜃 for the NN need to be learned –
need to set up a loss function.  



VAE Decoder
• The decoder takes latent variable z and returns 

parameters for a distribution.  E.g.,               gives 
the mean and variance for each pixel in the 
output. 

• Reconstruction    is produced by sampling.  
• Implemented via neural network, the NN 

parameters 𝜙 are learned.  



VAE loss function

• Loss function for autoencoder:  L2 distance 
between output and input (or clean input for 
denoising case)

• For VAE, we need to learn parameters of two 
probability distributions.  For a single input, xi, we 
maximize the expected value of returning xi or 
minimize the expected negative log likelihood.  

• This takes expected value wrt z over the current 
distribution              of the loss 



VAE loss function

• Problem:  the weights may adjust to memorize 
input images via z.  I.e., input that we regard as 
similar may end up very different in z space.  

• We prefer continuous latent representations to 
give meaningful parameterizations.   E.g., smooth 
changes from one digit to another.

• Solution:  Try to force             to be close to a 
standard normal (or some other simple density).   



VAE loss function

• For a single data point xi we get the loss function

• The first term promotes recovery of the input.
• The second term keeps the encoding continuous 

– the encoding is compared to a fixed p(z) 
regardless of the input, which inhibits 
memorization.  

• With this loss function the VAE can (almost) be 
trained using gradient descent on minibatches.  



VAE loss function

• For a single data point xi we get the loss 
function

• Problem:  The expectation would usually be 
approximated by choosing samples and 
averaging.  This is not differentiable wrt 𝜃
and 𝜙.  



VAE loss function
• Problem:  The expectation would usually be 

approximated by choosing samples and 
averaging.  This is not differentiable wrt 𝜃 and 
𝜙.  



VAE loss function
• Reparameterization:  If z is 𝑁(𝜇 𝑥! , Σ 𝑥! ), 

then we can sample z using 𝑧 = 𝜇 𝑥! +
√(Σ 𝑥!) 𝜖, where 𝜖 is N(0,1).  So we can 
draw samples from N(0,1), which doesn’t 
depend on the parameters.   



VAE generative model

• After training,             is close to a standard 
normal, N(0,1) – easy to sample.  

• Using a sample of z from             as input to 
sample from              gives an approximate 
reconstruction of xi, at least in expectation.  

• If we sample any z from N(0,1) and use it as input 
to to sample from              then we can 
approximate the entire data distribution p(x).   
I.e., we can generate new samples that look like 
the input but aren’t in the input.  
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Autoencoder with 3 fully connected layers

Large à small, learn to compress

Training: model.fit(X,X)
Cost function: Σk=1..N (xk – x’k)2
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Problems of VAE
• It does not really try to simulate real images

NN
Decoder

code

Output As close as 
possible

One pixel difference to 
the target

Also one pixel 
difference to the target

Realistic Fake

VAE treats these the same



Gradual and step-wise generation
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Generative Adversarial Networks
l GAN was first introduced by Ian Goodfellow et al in 

2014
l Have been used in generating images, videos, poems, 

some simple conversation.
l Note, image processing is easy (all animals can do it), 

NLP is hard (only human can do it).
l This co-evolution approach might have far-reaching 

implications. Bengio: this may hold the key to making 
computers a lot more intelligent.

l Tips for training GAN: 
https://github.com/soumith/ganhacks
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GAN – Learn a discriminator
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GAN – Learn a generator

Discri-
minator

v1

NN
Generator

v1

Randomly sample 
a vector

0.13

Updating the parameters of 
generator 

The output be classified 
as “real” (as close to 1 
as possible)

Generator + Discriminator = 
a network

Using gradient descent to 
update the parameters in the 
generator, but fix the 
discriminator 1.0

v2
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Do not
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Next few images

Traditional mean-squared
Error, averaged, blurry



Last 2 are by deep learning approaches.







Similar to word embedding (DCGAN paper)



256x256 high resolution pictures
by Plug and Play generative network



From natural language to pictures



Deriving GAN

• How to derive and train GAN
• I will avoid the continuous case and stick to 

simple explanations.



Maximum Likelihood Estimation
• Give a data distribution Pdata(x)
• We use a distribution PG(x;θ) parameterized by θ to 

approximate it
– E.g. PG(x;θ) is a Gaussian Mixture Model, where θ contains means and 

variances of the Gaussians.
– We wish to find θ s.t. PG(x;θ) is close to Pdata(x)

• In order to do  this, we can sample 
{x1,x2, … xm} from Pdata(x)

• The likelihood of generating these
xi’s under PG is

L= Πi=1…m PG(xi; θ)
• Then we can find θ* maximizing the L.



KL (Kullback-Leibler) divergence

• Discrete: 
DKL(P||Q) = ΣiP(i)log[P(i)/Q(i)]

• Continuous:
DKL(P||Q) =     p(x)log [p(x)/q(x)] 

• Explanations: 
Entropy: - ΣiP(i)logP(i) - expected code length (also optimal)
Cross Entropy: - ΣiP(i)log Q(i) – expected coding 

length using optimal code for Q
DKL= ΣiP(i)log[P(i)/Q(i)] = ΣiP(i)[logP(i) – logQ(i)], extra bits 
JSD(P||Q) = ½ DKL(P||M)+ ½ DKL(Q||M), M= ½ (P+Q), symmetric KL

* JSD = Jensen-Shannon Divergency 

−∞

∞



Maximum Likelihood Estimation
θ* = arg maxθ Πi=1..mPG(xi; θ) à

arg maxθ log Πi=1..mPG(xi; θ)
= arg maxθ Σi=1..m log PG(xi; θ),  {x1,..., xm} sampled from Pdata(x)
= arg maxθ Σi=1..m Pdata(xi) log PG(xi; θ)     --- this is cross entropy
≅ arg maxθ Σi=1..m Pdata(xi) log PG(xi; θ) - Σi=1..m Pdata(xi )logPdata(x i)
= arg minθ KL (Pdata(x) || PG(x; θ))           --- this is KL divergence

Note:  PG is Gaussian mixture model, finding best θ will still be Gaussians, this 
only can generate a few blubs. Thus this above maximum likelihood approach 
does not work well.

Next we will introduce GAN that will change PG, not just estimating PG is
parameters We will find best PG , which is more complicated and structured, 
to approximate Pdata. 



PG(x,θ)

How to compute the 
likelihood?

Thus let’s use an NN as PG(x; θ)
Pdata(x)

G

θ

Smaller
dimension

Larger
dimension

Prior 
distribution 
of z

PG(x) = Integrationz Pprior(z) I[G(z)=x]dz



Basic Idea of GAN
• Generator G

– G is a function, input z, output x 
– Given a prior distribution Pprior(z), a probability distribution PG(x) is 

defined by function G

• Discriminator D
– D is a function, input x, output scalar
– Evaluate the “difference” between PG(x) and Pdata(x)

• In order for D to find difference between Pdata from PG, we 
need a cost function V(G,D):

G*=arg minGmaxDV(G,D)
Note, we are changing distribution G, not just update 
its parameters (as in the max likelihood case).

Hard to learn PG by maximum likelihood



Basic Idea G* = arg minGmaxD V(G,D)

V(G1,D) V(G3,D)V(G2,D)

G1 G2 G3

Given a generator G, maxDV(G,D) evaluates the 
“difference” between PG and Pdata

Pick JSD function: V = Ex~P_data [log D(x)] + Ex~P_G[log(1-D(x))]

Pick the G s.t. PG is most similar to Pdata



lGiven G, what is the optimal D* maximizing

lGiven x, the optimal D* maximizing is:
f(D) = alogD + blog(1-D) è D*=a/(a+b)

Assuming D(x) can have any value here

MaxDV(G,D),  G*=arg minGmaxDV(G,D)

V = Ex~P_data [log D(x)] + Ex~P_G[log(1-D(x))]
= Σ [ Pdata(x) log D(x) + PG(x) log(1-D(x) ]

Thus: D*(x) = Pdata(x) / (Pdata(x)+PG(x))



V(G1,D)

V(G1,D*1)

“difference” between 
PG1 and Pdata

maxDV(G,D), G* = arg minGmaxD V(G,D)

D1*(x) = Pdata(x) / (Pdata(x)+PG_1(x)) D2*(x) = Pdata(x) / (Pdata(x)+PG_2(x))

V(G2,D) V(G3,D)



maxDV(G,D) V = Ex~P_data [log D(x)] 
+ Ex~P_G[log(1-D(x))]

maxD V(G,D) 
= V(G,D*),  where D*(x) = Pdata / (Pdata + PG), and 

1-D*(x) = PG / (Pdata + PG)
= Ex~P_data log D*(x) + Ex~P_G log (1-D*(x))
≈ Σ [ Pdata (x) log D*(x) + PG(x) log (1-D*(x)) ]
= -2log2 + 2 JSD(Pdata || PG ),  

JSD(P||Q) = Jensen-Shannon divergence
= ½ DKL(P||M)+ ½ DKL(Q||M)

where M= ½ (P+Q).
DKL(P||Q) = Σ P(x) log P(x) /Q(x)



Summary:
l Generator G, Discriminator D
l Looking for G* such that

l Given G, maxD V(G,D)
= -2log2 + 2JSD(Pdata(x) || PG(x)) 

l What is the optimal G? It is G that makes JSD 
smallest = 0:

PG(x) = Pdata (x)

V = Ex~P_data [log D(x)] 
+ Ex~P_G[log(1-D(x))]

G* = arg minGmaxD V(G,D)



Algorithm

• To find the best G minimizing the loss function L(G):
θG ß θG =−η L(G)/   θG  , θG defines G

• Solved by gradient descent. Having max ok. Consider 
simple case:

f(x) = max {D1(x), D2（x), D3(x)}

dD1(x)/dx dD2(x)/dx dD3(x)/dx

If Di(x) is the 
Max in that region, 
then do dDi(x)/dx

L(G), this is the 
loss function

G* = arg minGmaxD V(G,D)

D1(x)
D2(x)

D3(x)



Algorithm G* = arg minGmaxD V(G,D)
L(G), this is the
loss function

• Given G0

• Find D*0 maximizing V(G0,D)
V(G0,D0*) is the JS divergence between Pdata(x) and PG0(x)

• θG ß θG −η ΔV(G,D0*) / θG è Obtaining G1 (decrease JSD)

• Find D1* maximizing V(G1,D)
V(G1,D1*) is the JS divergence between Pdata(x) and PG1(x)

• θG ß θG −η ΔV(G,D1*) / θG è Obtaining G2 (decrease JSD)

• And so on …



In practice …

Minimize Cross-entropy
This is what a Binary Classifier do
Output is D(x)

Minimize –log D(x)If x is a positive example
If x is a negative example Minimize –log(1-D(x))

V = Ex~P_data [log D(x)] 
+ Ex~P_G[log(1-D(x))]

• Given G, how to compute maxDV(G,D)?
– Sample {x1, … ,xm} from Pdata

– Sample {x*1, … ,x*m} from generator PG

Maximize:
V’ = 1/m Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i)) 

Positive example
D must accept

Negative example
D must reject



{x1,x2, … xm}  from Pdata (x) 

D is a binary classifier (can be deep) with parameters θd

Positive examples

Negative examples

Maximize

Minimize L = - V’

Minimize Cross-entropy

Binary Classifier

Output is f(x)

Minimize –log f(x)If x is a positive example

If x is a negative example Minimize –log(1-f(x))

{x*1,x*2, … x*m} from PG(x)

V’ = Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i)) 

or



• In each training iteration
– Sample m examples {x1,x2, … xm} from data distribution 

Pdata(x)
– Sample m noise samples {z1, … , zm} from a simple prior 

Pprior(z)
– Obtain generated data {x*1, … , x*m}, x*i=G(zi)
– Update discriminator parameters θd to maximize 

• V’ ≈ 1/m Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i)) 

• θdß θd + ηΔV’(θd)   (gradient ascent)

Algorithm

Repeat 
k times

Learning D

Learning G

Initialize θd for D and θg for G
Can only find  lower bound 
of JSD or  maxDV(G,D)

Only 
Once

- Simple another m noise samples {z1,z2, … zm} from the 
prior Pprior(z)，G(zi)=x*i

- Update generator parameters θg to minimize 
V’= 1/mΣi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i)) 
θgß θg − ηΔV’(θg)   (gradient descent)



Objective Function for Generator
in Real Implementation

Real implementation: 
label x from PG as positive

Training slow at the beginning

V = Ex~P_data [log D(x)

+ Ex~P_G[log(1-D(x))]

V = Ex~P_G [ − log (D(x)) ]



Evaluating JS divergence

Martin Arjovsky, Léon Bottou, Towards Principled Methods for Training 
Generative Adversarial Networks, 2017, arXiv preprint

Discriminator is too strong: for all three
Generators, JSD = 0



Evaluating JS divergence

• JS divergence estimated by discriminator 
telling little information

Weak Generator Strong Generator



Discriminator

Reason 1. Approximate by sampling

1 for all positive examples 0 for all negative examples

= 0
log 2 when Pdata and PG differ 

completely

Weaken your discriminator?

Can weak discriminator 
compute JS divergence?

V = Ex~P_data [log D(x)] + Ex~P_G[log(1-D(x))]
= 1/m Σi=1..m logD(xi) + 1/m Σi=1..m log(1-D(x*i)) 

maxDV(G,D) = -2log2 + 2 JSD(Pdata || PG )



One simple solution: add noise

• Add some artificial noise to the inputs of 
discriminator

• Make the labels noisy for the discriminator

Pdata(x) and PG(x) have 
some overlap

Discriminator cannot perfectly separate real and generated 
data

Noises need to decay over time



Mode Collapse 

Data 
Distribution

Generated 
Distribution

Sometimes, this is hard to tell since 
one sees only what’s generated, but not what’s missed.

Converge to same faces



Mode Collapse Example 
8 Gaussian distributions:

What we want …

In reality …

Pdata



Experimental Results
• Approximate a mixture of Gaussians by single 

mixture



Text to Image, by conditional GAN



Text to Image
- Results

"red flower with 
black center"

From CY Lee lecture



WGAN Background

• We have seen that JSD does not give GAN a 
smooth and continuous improvement curve.

• We would like to find another distance which 
gives that. 

• This is the Wasserstein Distance or earth 
mover’s distance.



Earth Mover’s Distance
• Considering one distribution P as a pile of earth (total amount 

of earth is 1), and another distribution Q (another pile of 
earth) as the target

• The “earth mover’s distance” or “Wasserstein Distance” is the 
average distance the earth mover has to move the earth in an 
optimal plan.

d



Earth Mover’s Distance: best plan to 
move

P

Q



JS vs Earth Mover’s Distance

PG_50…… ……

d50

W(PG_0, Pdata)=d0

d0 d100

PG_0 Pdata PG_100 PdataPdata

JS(PG_0, Pdata) = log2 JS(PG_50, Pdata) = log2 JS(PG_100, Pdata) = 0

W(PG_100, Pdata)=0W(PG_50, Pdata)=d50



Explaining WGAN

• Let W be the Wasserstein distance.
W(Pdata, PG) = maxD is 1-Lipschitz[Ex~P_data D(x) – Ex~P_G D(x)]

Where a function f is a 
k-Lipschitz function if

||f(x1) – f(x2)|| ≤ k||x1 – x2 ||

How to guarantee this?
Weight clipping:  for all 
parameter updates, if w>c
Then w=c, if w<-c, then w=-c. WGAN will provide gradient to 

push PG towards Pdata

Blue: D(x) for original GAN
Green: D(x) for WGAN



Earth Mover Distance Examples:
Multi-layer perceptron



Lab this week

• T-SNE plots on MNIST, ex.19.2
• Next week: train a simple AE on MNIST (will 

upload a pdf doc for the AE architecture)
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