
CS 307. Logistic Regression,
Kalman Filtering



Today’s Goal

• Recall of Naïve Bayes Classifier
• Variable independence assumption
• Test is straightforward
• Performance competitive to most of state-of-the-art classifiers even in 

presence of violating independence assumption

• Logistic regression
• Kalman filtering



Multivariate analysis
• Machine learning models
• Linear regression
• Logistic regression
• Poisson regression
• Loglinear model
• Discriminant analysis
• ......

• Choice of the tool according to the objectives, 
the study, and the variables



Simple linear regression

Age SBP  Age SBP  Age SBP 
22 131  41 139  52 128 
23 128  41 171  54 105 
24 116  46 137  56 145 
27 106  47 111  57 141 
28 114  48 115  58 153 
29 123  49 133  59 157 
30 117  49 128  63 155 
32 122  50 183  67 176 
33 99  51 130  71 172 
35 121  51 133  77 178 
40 147  51 144  81 217 

 

 

Table 1    Age and systolic blood pressure (SBP) among 33 adult women
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Simple linear regression

• Relation between 2 continuous variables (SBP and age)

• Regression coefficient b1
• Measures association between y and x
• Amount by which y changes on average when x changes by one unit
• Least squares method
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Multiple linear regression

• Relation between a continuous variable and a set of i continuous variables 

• Partial regression coefficients bi
• Amount by which y changes on average when xi changes by one unit and all the other xis  remain

constant
• Measures association between xi and y adjusted for all other xi

• Example
• SBP versus age, weight, height, etc

 xβ ... xβ  xβαy ii2211 ++++=



Multiple linear regression

Predicted Predictor variables

Response variable Explanatory variables

Outcome variable Covariables
Dependent Independent variables

 xβ ... xβ  xβα                                      y ii2211 ++++=



Logistic regression (1)

Age CD  Age CD  Age CD 

22 0  40 0  54 0 
23 0  41 1  55 1 
24 0  46 0  58 1 
27 0  47 0  60 1 
28 0  48 0  60 0 
30 0  49 1  62 1 
30 0  49 0  65 1 
32 0  50 1  67 1 
33 0  51 0  71 1 
35 1  51 1  77 1 
38 0  52 0  81 1 

 

 

Table 2    Age and signs of coronary heart disease (CD)



How can we analyse these data?

• Compare mean age of diseased and non-diseased

• Non-diseased: 38.6 years
• Diseased: 58.7 years (p<0.0001)

• Linear regression?



Dot-plot: Data from Table 2
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Logistic regression (2)

Table 3 Prevalence (%) of signs of CD according to age group 

  Diseased 

Age group # in group # % 

20 - 29 5 0 0 

30 - 39 6 1 17 

40 - 49 7 2 29 

50 - 59 7 4 57 

60 - 69 5 4 80 

70 - 79 2 2 100 

80 - 89 1 1 100 
 
 

 



Dot-plot: Data from Table 3
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Logistic function (1)
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Fitting the data

• Linear regression: Least squares
• Logistic regression: Maximum likelihood
• Likelihood function
• Estimates parameters a and b 
• Practically easier to work with log-likelihood
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Maximum likelihood

• Iterative computing
• Choice of an arbitrary value for the coefficients (usually 0)
• Computing of log-likelihood
• Variation of coefficients’ values
• Reiteration until maximisation (plateau)

• Results
• Maximum Likelihood Estimates (MLE) for a and b
• Estimates of P(y) for a given value of x



Multiple logistic regression

• More than one independent variable
• Dichotomous, ordinal, nominal, continuous …

• Interpretation of bi
• Increase in log-odds for a one unit increase in xi with all the other xis constant
• Measures association between xi and log-odds adjusted for all other xi
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Robust Logistic Regression and Classification
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The estimated logistic regression curve (red solid) is far away from the 
correct one (blue dashed) due to the existence of just one outlier (red circle)



Robust Linear Regression Against Data
Poisoning Attack

• Phase 1: Rely on dimension reduction (PCA) to prune 
non-principal noise in the training data

• Phase 2: In the low-dimensional space, learn a linear 
model (i.e., PCR)
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Main Ideas: a two-phase solution



Main Challenges

• Both of the two phases can be the target of the training data poisoning 
adversary

• Have no assumption on the ground truth distribution
• ... except assuming they lie in a low-dimensional manifold
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What Can Be Achieved

• Prove a sufficient and necessary condition on the exact sub-space recovery 
problem
• Provides a criteria that the PCA process cannot be poisoned

• A bound on the expected test error when the training data is 
poisoned up to 𝜸 poisoning rate
• i.e., inject up to 𝛾𝑁 poisoning samples into the pristine training data of 𝑁

samples

22



Which line fits the data better?
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Answer: democracy!
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What about now?
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Observation 1: When 𝛾 ≥ 1, it is impossible to 
distinguish the poisoning samples from the 

pristine ones
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What is the mean of the data distribution?
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How can a data poisoning adversary
efficiently fool the mean estimator?
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Answer: leveraging the pristine data!
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Answer: leveraging the pristine data
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Answer: leveraging the pristine data
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Observation 2: the data poisoning adversary can fool
a machine learning algorithm if and only if there is a 

portion of the pristine data that he can leverage
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Sub-space Recovery Problem

• Problem Definition 1 (Subspace Recovery). Design an algorithm 
ℒ!"#$%"!&, which takes as input 𝑋, and returns a set of vectors 𝐵 that 
form the basis of 𝑋⋆

• Notation:
• 𝑋: observed (poisoned) feature matrix
• 𝑋⋆: the pristine feature matrix
• 𝑋": the pristine feature matrix with noise

• 𝑋! = 𝑋⋆ + 𝑛𝑜𝑖𝑠𝑒
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Noise Residual and sub-matrix Residual

• Noise residual 𝑁𝑅(𝑋0) optimizes
min
1!

|𝑋0 − 𝑋′|
s. t. rank 𝑋2 ≤ 𝑘

• Sub-matrix residual 𝑆𝑅(𝑋0) optimizes
min
3,5,6

|𝑋03 − 𝑈 9𝐵|
s. t. rank 9𝐵 = 𝑘, 9𝐵 9𝐵7 = 𝐼8 , 𝑋⋆ 9𝐵7 9𝐵 ≠ 𝑋⋆

𝐼 ⊆ 1,2, … , 𝑛 , 𝐼 = 1 − 𝛾 𝑁
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Sufficient and Necessary Condition

• Theorem. If 𝑆𝑅 𝑋! ≤ 𝑁𝑅(𝑋!), then no algorithm solves 
problem 1 with a probability greater than 1/2. 

• If 𝑆𝑅 𝑋! > 𝑁𝑅 𝑋! , then Algorithm 2 solves problem 1.
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Sub-space recover experiments
(synthetic data)
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Takeaways

Message 1. The poisoning attacker can leverage pristine data 
distribution to construct strong attacks

Message 2. When the poisoning ratio is not sufficiently large, we can 
bound the loss on the computed estimator.
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Kalman Filtering

• Follow a point
• Follow a template
• Follow a changing template
• Follow all the elements of a moving person, fit a model to it.
• What are the dynamics of the thing being tracked?
• How is it observed?
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Three main issues in tracking
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Simplifying Assumptions
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Kalman filter graphical model and corresponding factorized 
joint probability
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Tracking as induction

• Make a measurement starting in the 0th frame
• Then:  assume you have an estimate at the ith frame, after the 

measurement step.
• Show that you can do prediction for the i+1th frame, and 

measurement for the i+1th frame.
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Prediction step

given
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Correction step

given
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The Kalman Filter

• Key ideas: 
• Linear models interact uniquely well with Gaussian noise - make the prior 

Gaussian, everything else Gaussian and the calculations are easy
• Gaussians are really easy to represent --- once you know the mean and 

covariance, you’re done
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Recall the three main issues in tracking
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The Kalman Filter



48

Example: The Kalman Filter in 1D

• Dynamic Model

• Notation
Predicted mean

Corrected mean
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The Kalman Filter
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Prediction for 1D Kalman filter

• The new state is obtained by
• multiplying old state by known constant
• adding zero-mean noise

• Therefore, predicted mean for new state is
• constant times mean for old state

• Old variance is normal random variable
• variance is multiplied by square of constant
• and variance of noise is added.



51

The Kalman Filter
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Measurement update for 1D Kalman filter

Notice:
• if measurement noise is small, we rely mainly on 

the measurement;
• if it’s large, mainly on the prediction
• s does not depend on y
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What happens if the x dynamics are given a 
non-zero variance?
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Linear dynamic models
• A linear dynamic model has the form

• This is much, much more general than it looks, and extremely 
powerful

 

yi = N Mixi;Smi( )

 

xi = N Di-1xi-1;Sdi( )
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Examples of linear state space 
models

• Drifting points
• assume that the new position of the point is the old one, plus noise

D = Identity

 

yi = N Mixi;Smi( )

 

xi = N Di-1xi-1;Sdi( )
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Constant velocity           

• We have

• Stack (u, v) into a single state vector

• which is the form we had above

 

ui = ui-1 + Dtvi-1 + ei
vi = vi-1 + Vi
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yi = N Mixi;Smi( )

 

xi = N Di-1xi-1;Sdi( )

Di-1 xi-1xi
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Velocity
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Constant acceleration

• We have

• (the Greek letters denote noise terms)
• Stack (u, v) into a single state vector

• which is the form we had above

 

ui = ui-1 + Dtvi-1 + e i
vi = vi-1 + Dtai-1 +V i
ai = ai-1 + xi
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yi = N Mixi;Smi( )

 

xi = N Di-1xi-1;Sdi( )

Di-1 xi-1xi
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time

position

position
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Constant Acceleration Model
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Assume we have a point, moving on a line with a periodic movement 
defined with a differential eq: 

can be defined as 

with state defined as stacked position and velocity u=(p, v)

Periodic motion

 

yi = N Mixi;Smi( )

 

xi = N Di-1xi-1;Sdi( )
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Take discrete approximation….(e.g., forward Euler integration with Dt 
stepsize.)

Periodic motion

 

yi = N Mixi;Smi( )

 

xi = N Di-1xi-1;Sdi( )

Di-1
xi-1xi
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n-D Prediction

Generalization to n-D is straightforward but more complex.

Prediction:
• Multiply estimate at prior time with forward model:

• Propagate covariance through model and add new noise:
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n-D Correction

Generalization to n-D is straightforward but more complex.

Correction:
• Update a priori estimate with measurement to form a posteriori
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n-D correction

Find linear filter on innovations 

which minimizes a posteriori error covariance:

K is the Kalman Gain matrix.  A solution is
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As measurement becomes more reliable, K weights residual 
more heavily, 

As prior covariance approaches 0, measurements are 
ignored:

Kalman Gain Matrix

1

0
lim -

®S
=MKi

m

0lim
0

=
®S-

iK
i



68



69

position

po
sit

io
n

Constant Velocity Model

ve
lo

ci
ty

time



70

Smoothing

• Idea
• We don’t have the best estimate of state - what about the future?
• Run two filters, one moving forward, the other backward in time.
• Now combine state estimates

• The crucial point here is that we can obtain a smoothed estimate by viewing the 
backward filter’s prediction as yet another measurement for the forward filter
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Backward estimates.
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Combined forward-backward estimates.



74

Test several models of assumed dynamics

Multiple model filters
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Two models: Position (P), Position+Velocity (PV)

MM estimate



Non-toy image representation

Phase of a steerable quadrature pair (G2, H2).  Steered to 4 different 
orientations, at 2 scales.
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Representing Distributions using Weighted 
Samples
Rather than a parametric form, use a set of samples to represent a 

density:
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Representing Distributions using Weighted 
Samples
Rather than a parametric form, use a set of samples to represent a 

density:

Sample positions Probability mass at each sample

This gives us two knobs to adjust when representing a probability density by 
samples:  the locations of the samples, and the probability weight on each sample.



79[Isard 1998]

Representing distributions using weighted 
samples, another picture
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Sampled representation of a probability 
distribution

You can also think of this as a sum of dirac delta functions, each of weight w:
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Tracking, in particle filter representation
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P(xn | y1...yn ) = k P(yn | xn ) dxn-1P(xn | xn-1)P(xn-1 | y1...yn-1)ò

x1 x2 x3

y1 y2 y3
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Prediction step
Update step



82

Tracking
• hands
• bodies
• Leaves

What might we expect?
Reliable, robust, slow

Applications
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Contour tracking

[Isard 1998]
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Head tracking

[Isard 1998]
Picture of the states represented by 

the top weighted particles
The mean state
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Leaf tracking

[Isard 1998]


