
Bo Li
University of Illinois at Urbana-Champaign

1

CS307: Modeling and Learning in
Data Science

Goal of today’s class

• Recall basic algebra and statistics, basic CNN
design principles

• Understand the motivation and categorization
of dimension reduction/mapping

• Representative Mapping algorithms (chapter. 19)
– Sammon mapping, T-SNE
– Autoencoders/denoising autoencoders

2

Recall: Deep Learning Mini Crash

• Neural Networks Background
• Convolutional Neural Networks (CNNs)

3

Real-Valued Circuits

4

-2

3

-6 Goal: How do I increase the output
of the circuit?

- Tweak the inputs. But how?

- Option 1. Random Search?

x = x + step_size * random_value
y = y + step_size * random_value

Real-Valued Circuits

5

-2

3

-6

Goal: How do I increase the output
of the circuit?

- Option 2. Analytic Gradient

Limit as h -> 0

x = x + step_size * x_gradient
y = y + step_size * y_gradient

Composable Real-Valued Circuits

6

Backpropagation!Chain Rule

Single Neuron

7

Activation function

(Deep) Neural Networks!

8

Organize neurons into a
structure

Train (Optimize) using
backpropagation

Convolutional Neural Networks (CNNs)

9

Very widely used, and very useful

a plate with a sandwich and a salad

a group of motorcycles parked in front of a
building

a man riding a wave on top of a
surfboard

Convolutional Neural Networks (CNNs)

10

Convolution
Non Linearity (RELU)
Pooling or Subsampling
Classification (Fully Connected Layers)

A CNN generally consists of 4
types of architectural units

How is an image represented for NNs?

• Matrix of numbers, where each number represents
pixel intensity

• If image is colored, then there are three channels
per pixel, each channel representing (R, G, B) values

11

Convolution Operator

• Slide the kernel over the input matrix
• Compute element-wise multiplication, add results to get

a single value
• Output is a feature map

12

Grayscale Image
Kernel or Filter or
Feature Detector

Feature map!

Dimension
reduction!

Many types of filters

13

A CNN learns these filters during training

Pooling

14

Can be Avg, sum, min, …

Reduce dimensionality, but retain important features

Putting Everything Together

15

Dimension
reduction!

Activation functions: provide nonlinear representation power
Batch norm: normalization
Pooling/Dropout: provide randomness

Dimension reduction

Feature selection Dimensionality reduction

Components/factors
based

Projection/embedding
Based

• Missing value ratio
• Low variance filter
• High correlation filter
• Random forest
• Backward feature

extraction
• Forward feature

extraction

• Factor analysis
• Principal component analysis
• Independent component

analysis

• ISOMAP
• Sammon map
• T-SNE
• UMAP
• AE

Sammon mapping

• Principled coordinate analysis:
– limitation: the mapping will be almost

determined by points that are very far away

• Sammon mapping:

– makes the small distances more significant
– Limitation: a small distortion would make a big

difference

17

18

Sammon mappings of 1000 samples of a 784 dimensional MNIST digits.
• On the left, the mapping used the whole digit vector, and on the right, the data

was reduced to 30 dimensions using PCA, then subjected to a Sammon mapping
• The class labels were not used in training, but the plot shows class labels.
• As the legend on the side shows, the classes are moderately well separated.

Reducing dimension does not appear to make much difference

Takeaways-1

• Sammon mapping produces an embedding of
high dimensional data into a lower-dimensional
space that reduces the emphasis that principal
coordinate analysis places on large distances.

• It does so by solving an optimization problem to
choose coordinates in a low dimensional space
for each data point.

• Sammon mappings are often biased by very small
distances, however.

19

T-SNE
• Goal: build a mapping model by reasoning

about probability rather than only distance
• The probability that two points in the high

dimensional space are neighbors:

• The probability that two points in the low
dimensional space are neighbors:

20

T-SNE

• Mapping from the high dimensional to low
dimensional space:

• The gradient is of a simple form:

21

22

A T-SNE mapping of 1000 samples of a 784 dimensional dataset.
• On the left, the data was reduced to 30 dimensions using PCA, then

subjected to a T- SNE mapping. On the right, the data was reduced to 200
dimensions using PCA, then mapped.

• The class labels were not used in training, but the plot shows class labels.
• As the legend on the side shows, T-SNE separates the classes much more

effectively than Sammon mapping

Takeaway-2
• T-SNE produces an embedding of high dimensional

data into a lower-dimensional space.
• It does so by solving an optimization problem to

choose coordinates in a low dimensional space for
each data point.

• The optimization problem tries to make the probability
a pair of points are neighbors in the low dimensional
space similar to that probability in the high
dimensional space.

• T-SNE appears less inclined to distort datasets than
either principal coordinate analysis or Sammon
mapping.

23

Autoencoders
• Limitations of Sammon mapping and T-SNE:
– 1) we cannot construct y corresponding to a new x

(cannot map a given low-dimensional instance to
a high-dimensional one);

– 2) we cannot tell if a representation is good or not

• Solutions?
– Train another network to map from the low

dimension to high dimension again!

24

Autoencoders
• An autoencoder is a neural network trained to

copy its input to its output
• Network has encoder and decoder functions
• Autoencoders should not copy perfectly
– But restricted by design to copy only approximately
– By doing so, it learns useful properties of the data
– Modern autoencoders use stochastic mappings
– Autoencoders were traditionally used for

• Dimensionality reduction as well as feature learning

25

Autoencoders

• Supervised learning uses explicit labels/correct
output in order to train a network.
– E.g., classification of images.

• Unsupervised learning relies on data only.
– Key point is to produce a useful embedding.
– The embedding encodes structure such as word

similarity and some relationships.
– Still need to define a loss – this is an implicit

supervision.

26

Autoencoders: Structure
• Encoder: compress input into a latent-space of

usually smaller dimension. h = f(x)
• Decoder: reconstruct input from the latent

space. r = g(f(x)) with r as close to x as possible

27Blog: https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f

Autoencoders

• Compare PCA/SVD
– PCA takes a collection of vectors (images) and produces a

usually smaller set of vectors that can be used to
approximate the input vectors via linear combination.

– Very efficient for certain applications.
– Fourier and wavelet compression is similar.

• Neural network autoencoders
– Can learn nonlinear dependencies
– Can use convolutional layers
– Can use transfer learning

28

Who is more powerful?

• An autoencoder with linear decoder and MSE
loss function learns the same subspace as PCA

• Nonlinear encoder/decoder functions yield
more powerful nonlinear generalizations of
PCA

29

Regularized autoencoders

• Use a loss model that encourages properties
other than copying the input to the output
– Sparsity of representation
• L1 or KL regularization

– Smallness of the derivative of the representation
• Contractive autoencoder

– Robustness to noise or missing inputs
• Denoising autoencoder

30

Sparse autoencoders
• Construct a loss function to penalize activations

within a layer.
• Usually regularize the weights of a network, not

the activations.
• Individual nodes of a trained model that activate

are data-dependent.
– Different inputs will result in activations of different

nodes through the network.
• Selectively activate regions of the network

depending on the input data.

Sparse autoencoders
• Construct a loss function to penalize

activations the network.
– L1 Regularization: Penalize the absolute value of

the vector of activations a in layer h for
observation

– KL divergence: Use cross-entropy between
average activation and desired activation

Small derivatives of representation
• Arrange for similar inputs to have similar activations.

– I.e., the derivative of the hidden layer activations
are small with respect to the input.

• Contractive autoencoders make the feature extraction
function (ie. encoder) resist infinitesimal perturbations of the
input.

Small derivatives of representation
• Contractive autoencoders make the feature

extraction function (ie. encoder) resist
infinitesimal perturbations of the input.

Denoising autoencoder

• A denoising autoencoder (DAE) is one that
receives a corrupted data point as input and is
trained to predict the original, uncorrupted
data point as its output

• Learn the reconstructed distribution
– Choose a training sample from the training data
– Obtain corrupted version from corruption process
– Use training sample pair to estimate

reconstruction

35

Denoising autoencoder

36

Input

Hidden layer (code)

Reconstruction

Autoencoder Denoising
Autoencoder

x˜
g o f

(Goodfellow 2016)

x̃

C(x̃ | x)

A corrupted point is
local mapped back to
the original point

Denoising autoencoders learn a
manifold

Autoencoders: Applications

• Denoising: input clean image + noise and
train to reproduce the clean image.

38

Autoencoders: Applications

• Image colorization: input black and white and
train to produce color images

39

Autoencoders: Applications

• Watermark removal

40

Properties of Autoencoders

• Data-specific: Autoencoders are only able to
compress data similar to what they have been
trained on.

• Lossy: The decompressed outputs will be
degraded compared to the original inputs.

• Learned automatically from examples: It is
easy to train specialized instances of the
algorithm that will perform well on a specific
type of input.

41

Capacity

• As with other NNs, overfitting is a problem when
capacity is too large for the data.

• Autoencoders address this through some
combination of:
– Bottleneck layer – fewer degrees of freedom than in

possible outputs.
– Training to denoise.
– Sparsity through regularization.
– Contractive penalty.

42

Bottleneck layer (undercomplete)

• Suppose input images are n x n and the latent
space is m < n x n.

• Then the latent space is not sufficient to
reproduce all images.

• Needs to learn an encoding that captures the
important features in training data, sufficient
for approximate reconstruction.

43

Simple bottleneck layer in Keras
– input_img = Input(shape=(784,))
– encoding_dim = 32
– encoded = Dense(encoding_dim,

activation='relu')(input_img)
– decoded = Dense(784, activation='sigmoid')(encoded)
– autoencoder = Model(input_img, decoded)

• Maps 28x28 images into a 32 dimensional vector.
• Can also use more layers and/or convolutions.

Denoising autoencoders
• Basic autoencoder trains to minimize the loss

between x and the reconstruction g(f(x)).
• Denoising autoencoders train to minimize the

loss between x and g(f(x+w)), where w is
random noise.

• Same possible architectures, different training
data.

• Kaggle has a dataset on damaged documents.

https://www.kaggle.com/c/denoising-dirty-documents

Takeaway-3: Autoencoders
• Autoencoders allow the nonlinear representation

and learn high quality embeddings
• Advantage of denoising autoencoder: simpler to

implement-requires adding one or two lines of
code to regular autoencoder-no need to compute
Jacobian of hidden layer

• Various of applications of AE

Lab this week

• T-SNE plots on MNIST, ex.19.2

47

