CS307: Modeling and Learning in Data Science

Bo Li

University of Illinois at Urbana-Champaign

Goal of today's class

- Recall basic algebra and statistics, basic CNN design principles
- Understand the motivation and categorization of dimension reduction/mapping
- Representative Mapping algorithms (chapter. 19)
 - Sammon mapping, T-SNE
 - Autoencoders/denoising autoencoders

Recall: Deep Learning Mini Crash

- Neural Networks Background
- Convolutional Neural Networks (CNNs)

Real-Valued Circuits

Goal: How do I increase the output of the circuit?

- Tweak the inputs. But how?
- Option 1. Random Search?

$$f(x,y) = xy$$

x = x + step_size * random_value y = y + step_size * random_value

Real-Valued Circuits

Composable Real-Valued Circuits

Single Neuron

(Deep) Neural Networks!

Organize neurons into a structure

Train (Optimize) using backpropagation

Convolutional Neural Networks (CNNs)

Very widely used, and very useful

a group of motorcycles parked in front of a building

a man riding a wave on top of a surfboard

a plate with a sandwich and a salad

Convolutional Neural Networks (CNNs)

A CNN generally consists of 4 types of architectural units

Convolution Non Linearity (RELU) Pooling or Subsampling Classification (Fully Connected Layers)

How is an image represented for NNs?

- Matrix of numbers, where each number represents pixel intensity
- If image is colored, then there are three channels per pixel, each channel representing (R, G, B) values

Convolution Operator

- Slide the kernel over the input matrix
- Compute element-wise multiplication, add results to get a single value

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	S
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	C
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	C

Many types of filters

A CNN learns these filters during training

Rectified Feature Map

Putting Everything Together

Activation functions: provide **nonlinear** representation power Batch norm: **normalization** Pooling/Dropout: provide **randomness**

Dimension reduction

Feature selection

- Missing value ratio
- Low variance filter
- High correlation filter
- Random forest
- Backward feature extraction
- Forward feature extraction

Sammon mapping

- Principled coordinate analysis: $\sum_{i=1}^{n} (\mathbf{y}_i^T \mathbf{y}_j \mathbf{x}_i^T \mathbf{x}_j)^2$
 - limitation: the mapping will be almost determined by points that are very far away
- Sammon mapping:

$$C(\mathbf{y}_{1},...,\mathbf{y}_{N}) = \left(\frac{1}{\sum_{i < j} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|}\right) \sum_{i < j} \left[\frac{\left(\|\mathbf{y}_{i} - \mathbf{y}_{j}\| - \|\mathbf{x}_{i} - \mathbf{x}_{j}\|\right)^{2}}{\|\mathbf{x}_{i} - \mathbf{x}_{j}\|}\right]$$

- makes the small distances more significant
- Limitation: a small distortion would make a big difference

Sammon mappings of 1000 samples of a 784 dimensional MNIST digits.

- On the **left**, the mapping used the whole digit vector, and on the **right**, the data was reduced to 30 dimensions using PCA, then subjected to a Sammon mapping
- The class labels were not used in training, but the plot shows class labels.
- As the legend on the side shows, the classes are moderately well separated. Reducing dimension does not appear to make much difference

Takeaways-1

- Sammon mapping produces an embedding of high dimensional data into a lower-dimensional space that reduces the emphasis that principal coordinate analysis places on large distances.
- It does so by solving an optimization problem to choose coordinates in a low dimensional space for each data point.
- Sammon mappings are often biased by very small distances, however.

T-SNE

- Goal: build a mapping model by reasoning about *probability* rather than only *distance*
- The probability that two points in the high dimensional space are neighbors: $p_{j|i} = \frac{w_{j|i}}{\sum_k w_{k|i}}$ $w_{j|i} = \exp\left(\frac{\|\mathbf{x}_j - \mathbf{x}_i\|^2}{2\sigma_i^2}\right)$
- The probability that two points in the *low dimensional* space are neighbors:

$$q_{ij}(\mathbf{y}_1,\ldots,\mathbf{y}_N) = rac{rac{1}{1+\|\mathbf{y}_i-\mathbf{y}_j\|^2}}{\sum_{k,l,k
eq l}rac{1}{1+\|\mathbf{y}_l-\mathbf{y}_k\|^2}}$$

T-SNE

• Mapping from the high dimensional to low dimensional space:

$$C_{\underline{tsne}}(\mathbf{y}_1,\ldots,\mathbf{y}_N) = \sum_{ij} p_{ij} \log \frac{p_{ij}}{q_{ij}(\mathbf{y}_1,\ldots,\mathbf{y}_N)}$$

• The gradient is of a simple form:

$$\nabla_{\mathbf{y}_{i}} C_{\underline{tsne}} = 4 \sum_{j} \left[(p_{ij} - q_{ij}) \frac{(\mathbf{y}_{i} - \mathbf{y}_{j})}{1 + \|\mathbf{y}_{i} - \mathbf{y}_{j}\|^{2}} \right]$$

A T-SNE mapping of 1000 samples of a 784 dimensional dataset.

- On the left, the data was reduced to 30 dimensions using PCA, then subjected to a T- SNE mapping. On the right, the data was reduced to 200 dimensions using PCA, then mapped.
- The class labels were not used in training, but the plot shows class labels.
- As the legend on the side shows, T-SNE separates the classes much more effectively than Sammon mapping

Takeaway-2

- T-SNE produces an embedding of high dimensional data into a lower-dimensional space.
- It does so by solving an optimization problem to choose coordinates in a low dimensional space for each data point.
- The optimization problem tries to make the probability a pair of points are neighbors in the low dimensional space similar to that probability in the high dimensional space.
- T-SNE appears less inclined to distort datasets than either principal coordinate analysis or Sammon mapping.

- Limitations of Sammon mapping and T-SNE:
 - 1) we cannot construct y corresponding to a new x (cannot map a given low-dimensional instance to a high-dimensional one);
 - -2) we cannot tell if a representation is good or not
- Solutions?
 - Train another network to map from the low dimension to high dimension again!

- An autoencoder is a neural network trained to copy its input to its output
- Network has encoder and decoder functions
- Autoencoders should not copy perfectly
 - But restricted by design to copy only approximately
 - By doing so, it learns useful properties of the data
 - Modern autoencoders use stochastic mappings
 - Autoencoders were traditionally used for
 - Dimensionality reduction as well as feature learning

- Supervised learning uses explicit labels/correct output in order to train a network.
 - E.g., classification of images.
- Unsupervised learning relies on data only.
 - Key point is to produce a useful embedding.
 - The embedding encodes structure such as word similarity and some relationships.
 - Still need to define a loss this is an implicit supervision.

Autoencoders: Structure

- Encoder: compress input into a latent-space of usually smaller dimension. h = f(x)
- Decoder: reconstruct input from the latent space. r = g(f(x)) with r as close to x as possible

Blog: https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f

- Compare PCA/SVD
 - PCA takes a collection of vectors (images) and produces a usually smaller set of vectors that can be used to approximate the input vectors via linear combination.
 - Very efficient for certain applications.
 - Fourier and wavelet compression is similar.
- Neural network autoencoders
 - Can learn nonlinear dependencies
 - Can use convolutional layers
 - Can use transfer learning

Who is more powerful?

- An autoencoder with *linear* decoder and MSE loss function learns the **same** subspace as PCA
- Nonlinear encoder/decoder functions yield more powerful *nonlinear* generalizations of PCA

Regularized autoencoders

- Use a loss model that encourages properties other than copying the input to the output
 - Sparsity of representation
 - L1 or KL regularization
 - Smallness of the derivative of the representation
 - Contractive autoencoder
 - Robustness to noise or missing inputs
 - Denoising autoencoder

Sparse autoencoders

- Construct a loss function to penalize *activations* within a layer.
- Usually regularize the *weights* of a network, not the activations.
- Individual nodes of a trained model that activate are *data-dependent*.
 - Different inputs will result in activations of different nodes through the network.
- Selectively activate regions of the network depending on the input data.

Sparse autoencoders

- Construct a loss function to penalize *activations* the network.
 - **L1 Regularization**: Penalize the absolute value of the vector of activations a in layer h for observation $\mathcal{L}(x, \hat{x}) + \lambda \sum_{i} |a_i^{(h)}|$
 - KL divergence: Use cross-entropy between average activation and desired activation

$$\mathcal{L}(x,\hat{x}) + \sum_{j} KL\left(\rho || \hat{\rho}_{j}\right)$$

Small derivatives of representation

- Arrange for similar inputs to have similar activations.
 - I.e., the derivative of the hidden layer activations are small with respect to the input.
- Contractive autoencoders make the *feature extraction function* (ie. encoder) resist infinitesimal perturbations of the input.

Small derivatives of representation

• Contractive autoencoders make the *feature extraction function* (ie. encoder) resist infinitesimal perturbations of the input.

Denoising autoencoder

- A denoising autoencoder (DAE) is one that receives a corrupted data point as input and is trained to predict the original, uncorrupted data point as its output
- Learn the reconstructed distribution
 - Choose a training sample from the training data
 - Obtain corrupted version from corruption process
 - Use training sample pair to estimate reconstruction

Denoising autoencoder

Denoising autoencoders learn a manifold

Autoencoders: Applications

• Denoising: input clean image + noise and train to reproduce the clean image.

Autoencoders: Applications

• Image colorization: input black and white and train to produce color images

Autoencoders: Applications

• Watermark removal

Properties of Autoencoders

- Data-specific: Autoencoders are only able to compress data similar to what they have been trained on.
- **Lossy:** The decompressed outputs will be degraded compared to the original inputs.
- Learned automatically from examples: It is easy to train specialized instances of the algorithm that will perform well on a specific type of input.

Capacity

- As with other NNs, overfitting is a problem when capacity is too large for the data.
- Autoencoders address this through some combination of:
 - Bottleneck layer fewer degrees of freedom than in possible outputs.
 - Training to denoise.
 - Sparsity through regularization.
 - Contractive penalty.

Bottleneck layer (undercomplete)

- Suppose input images are n x n and the latent space is m < n x n.
- Then the latent space is not sufficient to reproduce all images.
- Needs to learn an encoding that captures the important features in training data, sufficient for approximate reconstruction.

Simple bottleneck layer in Keras

- input_img = Input(shape=(784,))
- encoding_dim = 32
- encoded = Dense(encoding_dim, activation='relu')(input_img)
- decoded = Dense(784, activation='sigmoid')(encoded)
- autoencoder = Model(input_img, decoded)
- Maps 28x28 images into a 32 dimensional vector.
- Can also use more layers and/or convolutions.

Denoising autoencoders

- Basic autoencoder trains to minimize the loss between x and the reconstruction g(f(x)).
- Denoising autoencoders train to minimize the loss between x and g(f(x+w)), where w is random noise.
- Same possible architectures, different training data.
- Kaggle has a dataset on damaged documents.

Takeaway-3: Autoencoders

- Autoencoders allow the nonlinear representation and learn high quality embeddings
- Advantage of denoising autoencoder: simpler to implement-requires adding one or two lines of code to regular autoencoder-no need to compute Jacobian of hidden layer
- Various of applications of AE

Lab this week

• T-SNE plots on MNIST, ex.19.2