CS307: Modeling and Learning in Data Science

Bo Li
University of Illinois at Urbana-Champaign
Goal of today’s class

• Recall basic algebra and statistics, basic CNN design principles

• Understand the motivation and categorization of dimension reduction/mapping

• Representative Mapping algorithms (chapter. 19)
 – Sammon mapping, T-SNE
 – Autoencoders/denoising autoencoders
Recall: Deep Learning Mini Crash

• Neural Networks Background
• Convolutional Neural Networks (CNNs)
Real-Valued Circuits

Goal: How do I increase the output of the circuit?

- Tweak the inputs. But how?
- Option 1. Random Search?

\[
f(x, y) = xy
\]

\[
x = x + \text{step_size} \times \text{random_value}
\]
\[
y = y + \text{step_size} \times \text{random_value}
\]
Goal: How do I increase the output of the circuit?

- Option 2. Analytic Gradient

\[
\frac{\partial f(x, y)}{\partial x} = \frac{f(x + h, y) - f(x, y)}{h}
\]

Limit as \(h \to 0 \)

\[
x = x + \text{step_size} \times x_gradient
\]

\[
y = y + \text{step_size} \times y_gradient
\]
Composable Real-Valued Circuits

\[f(x, y, z) = (x + y)z \]

\[f(q, z) = qz \Rightarrow \frac{\partial f(q, z)}{\partial q} = z, \quad \frac{\partial f(q, z)}{\partial z} = q \]

\[q(x, y) = x + y \Rightarrow \frac{\partial q(x, y)}{\partial x} = 1, \quad \frac{\partial q(x, y)}{\partial y} = 1 \]

Chain Rule
\[
\frac{\partial f(q, z)}{\partial x} = \frac{\partial q(x, y)}{\partial x} \frac{\partial f(q, z)}{\partial q}
\]

Backpropagation!
Single Neuron

Output of neuron: \(Y = f(w_1 \cdot X_1 + w_2 \cdot X_2 + b) \)

Activation function:
- Sigmoid
- ReLU
- tanh
(Deep) Neural Networks!

Organize neurons into a structure

Train (Optimize) using backpropagation
Convolutional Neural Networks (CNNs)

Very widely used, and very useful

- A plate with a sandwich and a salad
- A group of motorcycles parked in front of a building
- A man riding a wave on top of a surfboard
Convolutional Neural Networks (CNNs)

A CNN generally consists of 4 types of architectural units:

- Convolution
- Non Linearity (RELU)
- Pooling or Subsampling
- Classification (Fully Connected Layers)
How is an image represented for NNs?

- Matrix of numbers, where each number represents pixel intensity
- If image is colored, then there are three channels per pixel, each channel representing (R, G, B) values
Convolution Operator

- Slide the kernel over the input matrix
- Compute element-wise multiplication, add results to get a single value
- Output is a feature map

Dimension reduction!
Many types of filters

<table>
<thead>
<tr>
<th>Operation</th>
<th>Filter</th>
<th>Convolved Image</th>
</tr>
</thead>
</table>
| **Identity** | \[
0 0 0 \\
0 1 0 \\
0 0 0
\] | ![Identity Image] |
| **Edge detection** | \[
1 0 -1 \\
0 0 0 \\
-1 0 1
\] | ![Edge detection Image] |
| **Sharpen** | \[
0 -1 0 \\
-1 5 -1 \\
0 -1 0
\] | ![Sharpen Image] |
| **Box blur** | \[
\frac{1}{9} \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}
\] | ![Box blur Image] |
| **Gaussian blur** (approximation) | \[
\frac{1}{16} \begin{bmatrix}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{bmatrix}
\] | ![Gaussian blur Image] |

A CNN learns these filters during training
Pooling

Can be Avg, sum, min, ...

Reduce dimensionality, but retain important features
Putting Everything Together

Activation functions: provide **nonlinear** representation power
Batch norm: **normalization**
Pooling/Dropout: provide **randomness**
Dimension reduction

Feature selection
- Missing value ratio
- Low variance filter
- High correlation filter
- Random forest
- Backward feature extraction
- Forward feature extraction

Dimensionality reduction

Components/factors based
- Factor analysis
- Principal component analysis
- Independent component analysis

Projection/embedding Based
- ISOMAP
- Sammon map
- T-SNE
- UMAP
- AE
Sammon mapping

• Principled coordinate analysis: \[
\sum_{i,j} (y_i^T y_j - x_i^T x_j)^2
\]
 – limitation: the mapping will be almost determined by points that are very far away

• Sammon mapping:
 \[
 C(y_1, \ldots, y_N) = \left(\frac{1}{\sum_{i<j} \|x_i - x_j\|} \right) \sum_{i<j} \left[\frac{(\|y_i - y_j\| - \|x_i - x_j\|)^2}{\|x_i - x_j\|} \right]
 \]
 – makes the small distances more significant
 – Limitation: a small distortion would make a big difference
Sammon mappings of 1000 samples of a 784 dimensional MNIST digits.
• On the **left**, the mapping used the whole digit vector, and on the **right**, the data was reduced to 30 dimensions using PCA, then subjected to a Sammon mapping
• The class labels were not used in training, but the plot shows class labels.
• As the legend on the side shows, the classes are moderately well separated.
Reducing dimension does not appear to make much difference
Takeaways-1

• Sammon mapping produces an embedding of high dimensional data into a lower-dimensional space that reduces the emphasis that principal coordinate analysis places on large distances.
• It does so by solving an optimization problem to choose coordinates in a low dimensional space for each data point.
• Sammon mappings are often biased by very small distances, however.
T-SNE

• Goal: build a mapping model by reasoning about probability rather than only distance

• The probability that two points in the high dimensional space are neighbors:
 \(p_{j|i} = \frac{w_{j|i}}{\sum_k w_{k|i}} \)
 \(w_{j|i} = \exp \left(\frac{\|x_j - x_i\|^2}{2\sigma^2_i} \right) \)

• The probability that two points in the low dimensional space are neighbors:
 \(q_{ij}(y_1, \ldots, y_N) = \frac{1}{\sum_{k,l,k \neq l} \frac{1}{1 + \|y_i - y_j\|^2}} \)
T-SNE

• Mapping from the high dimensional to low dimensional space:

\[
C_{tsne}(y_1, \ldots, y_N) = \sum_{ij} p_{ij} \log \frac{p_{ij}}{q_{ij}(y_1, \ldots, y_N)}
\]

• The gradient is of a simple form:

\[
\nabla_{y_i} C_{tsne} = 4 \sum_j \left[(p_{ij} - q_{ij}) \frac{(y_i - y_j)}{1 + \|y_i - y_j\|^2} \right]
\]
A T-SNE mapping of 1000 samples of a 784 dimensional dataset.

- On the **left**, the data was reduced to 30 dimensions using PCA, then subjected to a T-SNE mapping. On the **right**, the data was reduced to 200 dimensions using PCA, then mapped.
- The class labels were not used in training, but the plot shows class labels.
- As the legend on the side shows, T-SNE separates the classes much more effectively than Sammon mapping.
Takeaway-2

• T-SNE produces an embedding of high dimensional data into a lower-dimensional space.
• It does so by solving an optimization problem to choose coordinates in a low dimensional space for each data point.
• The optimization problem tries to make the probability a pair of points are neighbors in the low dimensional space similar to that probability in the high dimensional space.
• T-SNE appears less inclined to distort datasets than either principal coordinate analysis or Sammon mapping.
Autoencoders

• Limitations of Sammon mapping and T-SNE:
 – 1) we cannot construct y corresponding to a new x
 (cannot map a given low-dimensional instance to a high-dimensional one);
 – 2) we cannot tell if a representation is good or not

• Solutions?
 – Train another network to map from the low dimension to high dimension again!
Autoencoders

• An autoencoder is a neural network trained to copy its input to its output
• Network has encoder and decoder functions
• Autoencoders should not copy perfectly
 – But restricted by design to copy only approximately
 – By doing so, it learns useful properties of the data
 – Modern autoencoders use stochastic mappings
• Autoencoders were traditionally used for
 • Dimensionality reduction as well as feature learning
Autoencoders

• Supervised learning uses explicit labels/correct output in order to train a network.
 – E.g., classification of images.

• Unsupervised learning relies on data only.
 – Key point is to produce a useful embedding.
 – The embedding encodes structure such as word similarity and some relationships.
 – Still need to define a loss – this is an implicit supervision.
Autoencoders: Structure

- **Encoder**: compress input into a latent-space of usually smaller dimension. \(h = f(x) \)
- **Decoder**: reconstruct input from the latent space. \(r = g(f(x)) \) with \(r \) as close to \(x \) as possible

Blog: https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f
Autoencoders

• Compare PCA/SVD
 – PCA takes a collection of vectors (images) and produces a usually smaller set of vectors that can be used to approximate the input vectors via linear combination.
 – Very efficient for certain applications.
 – Fourier and wavelet compression is similar.

• Neural network autoencoders
 – Can learn nonlinear dependencies
 – Can use convolutional layers
 – Can use transfer learning
Who is more powerful?

• An autoencoder with *linear* decoder and MSE loss function learns the *same* subspace as PCA
• Nonlinear encoder/decoder functions yield more powerful *nonlinear* generalizations of PCA
Regularized autoencoders

• Use a loss model that encourages properties other than copying the input to the output
 – Sparsity of representation
 • L1 or KL regularization
 – Smallness of the derivative of the representation
 • Contractive autoencoder
 – Robustness to noise or missing inputs
 • Denoising autoencoder
Sparse autoencoders

• Construct a loss function to penalize activations within a layer.
• Usually regularize the weights of a network, not the activations.
• Individual nodes of a trained model that activate are data-dependent.
 – Different inputs will result in activations of different nodes through the network.
• Selectively activate regions of the network depending on the input data.
Sparse autoencoders

• Construct a loss function to penalize activations the network.

 – **L1 Regularization**: Penalize the absolute value of the vector of activations a in layer h for observation
 $$\mathcal{L}(x, \hat{x}) + \lambda \sum_i |a_i^{(h)}|$$

 – **KL divergence**: Use cross-entropy between average activation and desired activation
 $$\mathcal{L}(x, \hat{x}) + \sum_j KL(\rho || \hat{\rho}_j)$$
Small derivatives of representation

• Arrange for similar inputs to have similar activations.
 - I.e., the *derivative of the hidden layer activations are small* with respect to the input.

• Contractive autoencoders make the *feature extraction function* (ie. encoder) resist infinitesimal perturbations of the input.

\[L(x, \hat{x}) + \lambda \sum_i \| \nabla_x a_i^{(h)}(x) \|^2 \]

![Diagram showing training observations, learned reconstruction function, and linear identity function with observed during training](image)
Small derivatives of representation

- Contractive autoencoders make the *feature extraction function* (i.e., encoder) resist infinitesimal perturbations of the input.
Denoising autoencoder

• A denoising autoencoder (DAE) is one that receives a corrupted data point as input and is trained to predict the original, uncorrupted data point as its output.

• Learn the reconstructed distribution
 – Choose a training sample from the training data
 – Obtain corrupted version from corruption process
 – Use training sample pair to estimate reconstruction
Denoising autoencoder

Autoencoder

Denoising Autoencoder
Denoising autoencoders learn a manifold

A corrupted point is local mapped back to the original point
Autoencoders: Applications

- Denoising: input clean image + noise and train to reproduce the clean image.

![Diagram of autoencoder process](image-url)
Autoencoders: Applications

- Image colorization: input black and white and train to produce color images
Autoencoders: Applications

- Watermark removal
Properties of Autoencoders

• **Data-specific**: Autoencoders are only able to compress data similar to what they have been trained on.

• **Lossy**: The decompressed outputs will be degraded compared to the original inputs.

• **Learned automatically from examples**: It is easy to train specialized instances of the algorithm that will perform well on a specific type of input.
Capacity

• As with other NNs, overfitting is a problem when capacity is too large for the data.

• Autoencoders address this through some combination of:
 – Bottleneck layer – fewer degrees of freedom than in possible outputs.
 – Training to denoise.
 – Sparsity through regularization.
 – Contractive penalty.
Bottleneck layer (undercomplete)

• Suppose input images are $n \times n$ and the latent space is $m < n \times n$.
• Then the latent space is not sufficient to reproduce all images.
• Needs to learn an encoding that captures the important features in training data, sufficient for approximate reconstruction.
Simple bottleneck layer in Keras

- `input_img = Input(shape=(784,))`
- `encoding_dim = 32`
- `encoded = Dense(encoding_dim, activation='relu')(input_img)`
- `decoded = Dense(784, activation='sigmoid')(encoded)`
- `autoencoder = Model(input_img, decoded)`

- Maps 28x28 images into a 32 dimensional vector.
- Can also use more layers and/or convolutions.
Denoising autoencoders

• Basic autoencoder trains to minimize the loss between x and the reconstruction $g(f(x))$.

• Denoising autoencoders train to minimize the loss between x and $g(f(x+w))$, where w is random noise.

• Same possible architectures, different training data.

• [Hyperlink to Kaggle dataset on damaged documents](https://www.kaggle.com/datasets)
Takeaway-3: Autoencoders

- Autoencoders allow the nonlinear representation and learn high quality embeddings
- Advantage of denoising autoencoder: simpler to implement-requires adding one or two lines of code to regular autoencoder-no need to compute Jacobian of hidden layer
- Various of applications of AE
Lab this week

• T-SNE plots on MNIST, ex.19.2