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CS307: Modeling and Learning in
Data Science



Goal of today’s class

• Recall basic algebra and statistics, basic CNN
design principles

• Understand the motivation and categorization
of dimension reduction/mapping

• Representative Mapping algorithms (chapter. 19)
– Sammon mapping, T-SNE
– Autoencoders/denoising autoencoders
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Recall: Deep Learning Mini Crash

• Neural Networks Background
• Convolutional Neural Networks  (CNNs)
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Real-Valued Circuits
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-2

3

-6 Goal: How do I increase the output 
of the circuit?

- Tweak the inputs. But how?

- Option 1. Random Search?

x = x + step_size * random_value
y = y + step_size * random_value



Real-Valued Circuits
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-2

3

-6

Goal: How do I increase the output 
of the circuit?

- Option 2. Analytic Gradient

Limit as h -> 0

x = x + step_size * x_gradient
y = y + step_size * y_gradient



Composable Real-Valued Circuits
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Backpropagation!Chain Rule



Single Neuron
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Activation function



(Deep) Neural Networks!
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Organize neurons into a 
structure

Train (Optimize) using 
backpropagation



Convolutional Neural Networks (CNNs)
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Very widely used, and very useful

a plate with a sandwich and a salad

a group of motorcycles parked in front of a 
building

a man riding a wave on top of a 
surfboard



Convolutional Neural Networks (CNNs)
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Convolution
Non Linearity (RELU)
Pooling or Subsampling
Classification (Fully Connected Layers)

A CNN generally consists of 4 
types of architectural units



How is an image represented for NNs?

• Matrix of numbers, where each number represents 
pixel intensity

• If image is colored, then there are three channels 
per pixel, each channel representing (R, G, B) values

11



Convolution Operator

• Slide the kernel over the input matrix
• Compute element-wise multiplication, add results to get 

a single value
• Output is a feature map
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Grayscale Image
Kernel or Filter or 
Feature Detector

Feature map!

Dimension
reduction!



Many types of filters
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A CNN learns these filters during training



Pooling
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Can be Avg, sum, min, …

Reduce dimensionality, but retain important features



Putting Everything Together
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Dimension
reduction!

Activation functions: provide nonlinear representation power
Batch norm: normalization
Pooling/Dropout: provide randomness



Dimension reduction

Feature selection Dimensionality reduction

Components/factors
based

Projection/embedding
Based

• Missing value ratio
• Low variance filter
• High correlation filter
• Random forest
• Backward feature

extraction
• Forward feature

extraction

• Factor analysis
• Principal component analysis
• Independent component

analysis

• ISOMAP
• Sammon map
• T-SNE
• UMAP
• AE



Sammon mapping

• Principled coordinate analysis:
– limitation: the mapping will be almost 

determined by points that are very far away

• Sammon mapping:

– makes the small distances more significant
– Limitation: a small distortion would make a big 

difference
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Sammon mappings of 1000 samples of a 784 dimensional MNIST digits. 
• On the left, the mapping used the whole digit vector, and on the right, the data 

was reduced to 30 dimensions using PCA, then subjected to a Sammon mapping 
• The class labels were not used in training, but the plot shows class labels. 
• As the legend on the side shows, the classes are moderately well separated. 

Reducing dimension does not appear to make much difference 



Takeaways-1

• Sammon mapping produces an embedding of 
high dimensional data into a lower-dimensional 
space that reduces the emphasis that principal 
coordinate analysis places on large distances. 

• It does so by solving an optimization problem to 
choose coordinates in a low dimensional space 
for each data point. 

• Sammon mappings are often biased by very small 
distances, however. 
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T-SNE
• Goal: build a mapping model by reasoning 

about probability rather than only distance
• The probability that two points in the high 

dimensional space are neighbors:

• The probability that two points in the low 
dimensional space are neighbors:
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T-SNE

• Mapping from the high dimensional to low 
dimensional space: 

• The gradient is of a simple form:
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A T-SNE mapping of 1000 samples of a 784 dimensional dataset. 
• On the left, the data was reduced to 30 dimensions using PCA, then 

subjected to a T- SNE mapping. On the right, the data was reduced to 200 
dimensions using PCA, then mapped. 

• The class labels were not used in training, but the plot shows class labels. 
• As the legend on the side shows, T-SNE separates the classes much more 

effectively than Sammon mapping 



Takeaway-2
• T-SNE produces an embedding of high dimensional 

data into a lower-dimensional space.
• It does so by solving an optimization problem to 

choose coordinates in a low dimensional space for 
each data point. 

• The optimization problem tries to make the probability
a pair of points are neighbors in the low dimensional 
space similar to that probability in the high 
dimensional space. 

• T-SNE appears less inclined to distort datasets than 
either principal coordinate analysis or Sammon
mapping. 
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Autoencoders
• Limitations of Sammon mapping and T-SNE: 
– 1) we cannot construct y corresponding to a new x 

(cannot map a given low-dimensional instance to 
a high-dimensional one); 

– 2) we cannot tell if a representation is good or not

• Solutions?
– Train another network to map from the low 

dimension to high dimension again!
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Autoencoders
• An autoencoder is a neural network trained to 

copy its input to its output
• Network has encoder and decoder functions
• Autoencoders should not copy perfectly
– But restricted by design to copy only approximately
– By doing so, it learns useful properties of the data
– Modern autoencoders use stochastic mappings
– Autoencoders were traditionally used for

• Dimensionality reduction as well as feature learning
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Autoencoders

• Supervised learning uses explicit labels/correct 
output in order to train a network.
– E.g., classification of images.

• Unsupervised learning relies on data only.
– Key point is to produce a useful embedding.
– The embedding encodes structure such as word 

similarity and some relationships.
– Still need to define a loss – this is an implicit 

supervision.
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Autoencoders: Structure
• Encoder:  compress input into a latent-space of 

usually smaller dimension.  h = f(x)
• Decoder: reconstruct input from the latent 

space.   r = g(f(x)) with r as close to x as possible

27Blog: https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f



Autoencoders

• Compare PCA/SVD
– PCA takes a collection of vectors (images) and produces a 

usually smaller set of vectors that can be used to 
approximate the input vectors via linear combination.  

– Very efficient for certain applications.
– Fourier and wavelet compression is similar.

• Neural network autoencoders
– Can learn nonlinear dependencies
– Can use convolutional layers
– Can use transfer learning
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Who is more powerful?

• An autoencoder with linear decoder and MSE 
loss function learns the same subspace as PCA

• Nonlinear encoder/decoder functions yield 
more powerful nonlinear generalizations of 
PCA
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Regularized autoencoders

• Use a loss model that encourages properties 
other than copying the input to the output
– Sparsity of representation
• L1 or KL regularization

– Smallness of the derivative of the representation
• Contractive autoencoder

– Robustness to noise or missing inputs
• Denoising autoencoder
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Sparse autoencoders
• Construct a loss function to penalize activations

within a layer.
• Usually regularize the weights of a network, not 

the activations. 
• Individual nodes of a trained model that activate 

are data-dependent.
– Different inputs will result in activations of different 

nodes through the network.
• Selectively activate regions of the network 

depending on the input data.



Sparse autoencoders
• Construct a loss function to penalize 

activations the network.
– L1 Regularization: Penalize the absolute value of 

the vector of activations a in layer h for 
observation 

– KL divergence: Use cross-entropy between 
average activation and desired activation



Small derivatives of representation
• Arrange for similar inputs to have similar activations.

– I.e., the derivative of the hidden layer activations 
are small with respect to the input.

• Contractive autoencoders make the feature extraction 
function (ie. encoder) resist infinitesimal perturbations of the 
input.



Small derivatives of representation
• Contractive autoencoders make the feature 

extraction function (ie. encoder) resist 
infinitesimal perturbations of the input.



Denoising autoencoder

• A denoising autoencoder (DAE) is one that 
receives a corrupted data point as input and is 
trained to predict the original, uncorrupted 
data  point as its output

• Learn the reconstructed distribution
– Choose a training sample from the training data
– Obtain corrupted version from corruption process
– Use training sample pair to estimate 

reconstruction
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Denoising autoencoder
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Input

Hidden layer (code)

Reconstruction

Autoencoder Denoising 
Autoencoder



x˜
g o f

(Goodfellow 2016)

x̃

C(x̃ | x )

A corrupted point is 
local mapped back to 
the original point

Denoising autoencoders learn a 
manifold



Autoencoders: Applications

• Denoising:  input clean image + noise and 
train to reproduce the clean image.
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Autoencoders: Applications

• Image colorization:  input black and white and 
train to produce color images
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Autoencoders: Applications

• Watermark removal
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Properties of Autoencoders

• Data-specific: Autoencoders are only able to 
compress data similar to what they have been 
trained on.

• Lossy: The decompressed outputs will be 
degraded compared to the original inputs.

• Learned automatically from examples: It is 
easy to train specialized instances of the 
algorithm that will perform well on a specific 
type of input.
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Capacity

• As with other NNs, overfitting is a problem when 
capacity is too large for the data. 

• Autoencoders address this through some 
combination of:
– Bottleneck layer – fewer degrees of freedom than in 

possible outputs.  
– Training to denoise.
– Sparsity through regularization.
– Contractive penalty. 
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Bottleneck layer (undercomplete)

• Suppose input images are n x n and the latent 
space is m < n x n.  

• Then the latent space is not sufficient to 
reproduce all images.  

• Needs to learn an encoding that captures the 
important features in training data, sufficient 
for approximate reconstruction.  
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Simple bottleneck layer in Keras
– input_img = Input(shape=(784,)) 
– encoding_dim = 32 
– encoded = Dense(encoding_dim, 

activation='relu')(input_img) 
– decoded = Dense(784, activation='sigmoid')(encoded) 
– autoencoder = Model(input_img, decoded)

• Maps 28x28 images into a 32 dimensional vector.  
• Can also use more layers and/or convolutions.  



Denoising autoencoders
• Basic autoencoder trains to minimize the loss 

between x and the reconstruction g(f(x)).
• Denoising autoencoders train to minimize the 

loss between x and g(f(x+w)), where w is 
random noise.  

• Same possible architectures, different training 
data.  

• Kaggle has a dataset on damaged documents.  

https://www.kaggle.com/c/denoising-dirty-documents


Takeaway-3: Autoencoders
• Autoencoders allow the nonlinear representation 

and learn high quality embeddings
• Advantage of denoising autoencoder: simpler to 

implement-requires adding one or two lines of 
code to regular autoencoder-no need to compute 
Jacobian of hidden layer

• Various of applications of AE



Lab this week

• T-SNE plots on MNIST, ex.19.2
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