CS307: Modeling and Learning in
Data Science

Bo L1
University of Illinois at Urbana-Champaign

Goal of today’s class

e Recall basic algebra and statistics, basic CNN
design principles

* Understand the motivation and categorization
of dimension reduction/mapping

* Representative Mapping algorithms (chapter. 19)

— Sammon mapping, T-SNE
— Autoencoders/denoising autoencoders

Recall: Deep Learning Mini Crash

* Neural Networks Background
* Convolutional Neural Networks (CNNs)

Real-Valued Circuits

6 Goal: How do | increase the output
* of the circuit?
- Tweak the inputs. But how?
- Option 1. Random Search?
f(;p, y) =5 X = X + step_size * random_value

y =y + step_size * random_value

Real-Valued Circuits

Goal: How do | increase the output
of the circuit?
* i | -
- Option 2. Analytic Gradient
of(z,y) flz+hy) — f(z,y)
ox h
flz,y) =zy Limit as h ->0

X = X + step_size * x_gradient
y =y + step_size *y gradient

Composable Real-Valued Circuits

X q
y — + * — f f(x,y,z):(a:+y)z
Z]

df(q, of(q,
f(Qa Z) =gz — féqq Z) = % féqz Z) —=q

0q(x, 0q(x,
(zy) =z 1y . qgwy) _1 q(ayy) 4
Chain Rule 91(22) = 94(2,y) 51(9,2) Backpropagation!

Single Neuron

1 10
wl ’n:
X1 — Y e -
Sigmoid
w2
X2 '

Output of neuron =Y= f(wl. X1 +w2.X2 + b) b ~op

" A " 1 — '—vIH
-10 -5 5 10
L -
RelU !

Activation function

(Deep) Neural Networks!

Input Layer Hidden Layer Output Layer

Hidden
node 1

Organize neurons into a

structure
Output 1

Train (Optimize) using
backpropagation

Output 2

Hidden
\ node 3

Convolutional Neural Networks (CNNs)

Very widely used, and very useful

a man riding a wave on top of a
a group of motorcycles parked in front of a surfboard
building

a plate with a sandwich and a salad

Convolutional Neural Networks (CNNs)

Convolution Pooling Convolution Pooling Fully Fully
Connected Connected

Output Predictions

~—w. dog(0.01)
cat (0.04)
boat (0.94)
bird (0.02)
-0
Convolution
A CNN generally consists of 4 Non Linearity (RELU)
types of architectural units Pooling or Subsampling

Classification (Fully Connected Layers)

10

How is an image represented for NNs?

&

* Matrix of numbers, where each number represents
pixel intensity

* |fimage is colored, then there are three channels
per pixel, each channel representing (R, G, B) values

Convolution Operator

1/1(1 0|0 1/1)1/0/|0
0 0|1(1/1|0 4

SEREIETE REE Feature map!
0/o|1 1|1 0j1]0 > 00/ (11
o ol1/ 10 1 0|0(1|1|0
0/1/1 00 2]

Kernel or Filter or Image Convolved

Feature Detector Feature

Grayscale Image

Slide the kernel over the input matrix

Compute element-wise multiplication, add results to get
a single value
Output is alfeature map |

————, Dimension
reduction!

12

Operation Filter Convolved

Image
0 0 0
Identity I S5 1)
0 0 0
1 0 -1
0 0 0
1 0 1
0 1 0
Edge detection 1 4 1
0 1 0
-1 -1 -1
-1 8 -1
1 1 1
0 1 0
Sharpen -1 5
0 -1 0
11 1
Box blur 1 ll 1 1 j|
(normalized) 9
1 11
Geuselen biur U ; A CNN learns these filters during training
- 12 4 2
(approximation) 16 i 2

Max(1,1,5,6)=6

< "‘J1\\ 2|4
/ max pool with 2x2 filters
ide 2
\5 6/ B and stride
3 | 2 S
1| 2

4

Rectified Feature Map

Pooling

Input Image

Convolution
using 3 filters

Can be Avg, sum, min, ...

Pooling applied
separately on each
feature map

+RelU
1
|
Rectified
Feature Maps
[
THrheew] 1
D o = 4
e 11—

Reduce dimensionality, but retain important features

14

Putting Everything Together

Dimension
__—" reduction!

[Convolunon Pooling Convolution Pooling Fully Fully Output Predictions

+ RelU + RelU Connected) Connected
1) |
Dog (0)
Cat (0)
Boat (1)
r_r, Bird (0)
o

Eiotat = > %(Iur‘r/(/ — output)?

| \
| |\ |

| v

Feature Extraction from Image Classification

Activation functions: provide nonlinear representation power
Batch norm: normalization

Pooling/Dropout: provide randomness
15

Dimension reduction

Feature selection

Missing value ratio
Low variance filter

High correlation filter Components/factors ‘ Projection/embedding
Random forest based - Based I
Backward feature I :
extraction * Factor analysis : * ISOMAP '
Forwarfj feature * Principal component analysisi * Sammon map :
extraction * Independent component : * T-SNE !
analysis .+ UMAP '
Voo AE /l

~

_—e— e mm Em Em Em Em wm ®

Sammon mapping
» Principled coordinate analysis: >_ (+7y; —xIx;)’

2,]
— limitation: the mapping will be almost
determined by points that are very far away

* Sammon mapping:

_ 1 (ys = y51 — 1% = %)’
Gty s¥m) = (zm x —x; ||> 2 [I =,]

1<J

— makes the small distances more significant

— Limitation: a small distortion would make a big
difference

@ () = 0
o1 o]

2 2
% 4 < 4

5 o 5
« 6| of 6
x 7 7
v 8 v 8

9 9

n 0

Sammon mappings of 1000 samples of a 784 dimensional MNIST digits.

* On the left, the mapping used the whole digit vector, and on the right, the data
was reduced to 30 dimensions using PCA, then subjected to a Sammon mapping

* The class labels were not used in training, but the plot shows class labels.

* Asthe legend on the side shows, the classes are moderately well separated.
Reducing dimension does not appear to make much difference

18

Takeaways-1

 Sammon mapping produces an embedding of
high dimensional data into a lower-dimensional
space that reduces the emphasis that principal
coordinate analysis places on large distances.

* |t does so by solving an optimization problem to
choose coordinates in a low dimensional space
for each data point.

 Sammon mappings are often biased by very small
distances, however.

T-SNE

* Goal: build a mapping model by reasoning
about probability rather than only distance

* The probability that two points in the high

Wil

dimensional space are neighbors: p;;: = R
k)

Ix; —xi|”
’U)ﬂz = exXp 20_2
)

* The probability that two points in the low
dimensional space are neighbors:

1+l —y°

— 1
zk’l’k?ﬂ 1+ly: —yxl?

T-SNE

* Mapping from the high dimensional to low
dimensional space:

Dij
Ctsne(Y1,---,YN) pij log
e Z 1 sz y17~~~7YN)

 The gradient is of a simple form:

(yi —y;)
V}'i Ctsne — 4 (ij _ QZJ) 2
2 T

%
* b
Sn i:“g:f: %
* *
S ° 0
P el T
LGS - T ! o1
ugi g ¥ 7
= ' L
wa¥ x ik *
gé’;% . mi g *,v uﬁ " 3
0, E " . LA
o%c ¥ ¥ X 4
°°%%°é§ * v y v K “ o *
HRs 0 8 . y = 5
S R e
0o 00O A4
I A A2d »] *6
o885 % oF Ty *AE
0gq, ©f Y. v * 0 -
PR PR 02 N axd 27
008%3’%080 % 4 vv‘%‘g tmfﬂ
8300 e WWesiv ¥ = v 8
* v vv&vvg
° gv vy ¥ 9
v Y o v
. ..::. ,:.::.' 0.
o
. *® %y o f gl o
Y -,:: ..- e w%“ m?’lg :‘F
[S iy "Jnﬂ’n o - oo
oy o ® il gt f&,“
. of of
o v, v .ﬂ,n = :,‘,:l
v oo a
v v %" omn
% %ﬂﬂ
1

A T-SNE mapping of 1000 samples of a 784 dimensional dataset.

On the left, the data was reduced to 30 dimensions using PCA, then
subjected to a T- SNE mapping. On the right, the data was reduced to 200
dimensions using PCA, then mapped.

The class labels were not used in training, but the plot shows class labels.
As the legend on the side shows, T-SNE separates the classes much more
effectively than Sammon mapping

22

Takeaway-2

T-SNE produces an embedding of high dimensional
data into a lower-dimensional space.

It does so by solving an optimization problem to
choose coordinates in a low dimensional space for
each data point.

The optimization problem tries to make the probability
a pair of points are neighbors in the low dimensional
space similar to that probability in the high
dimensional space.

T-SNE appears less inclined to distort datasets than
either principal coordinate analysis or Sammon

mapping.

Autoencoders

e Limitations of Sammon mapping and T-SNE:

— 1) we cannot construct y corresponding to a new x
(cannot map a given low-dimensional instance to
a high-dimensional one);

— 2) we cannot tell if a representation is good or not
e Solutions?

— Train another network to map from the low
dimension to high dimension again!

Autoencoders

e An autoencoder is a neural network trained to
copy its input to its output

e Network has encoder and decoder functions

e Autoencoders should not copy perfectly

— But restricted by design to copy only approximately
— By doing so, it learns useful properties of the data
— Modern autoencoders use stochastic mappings

— Autoencoders were traditionally used for

e Dimensionality reduction as well as feature learning

Autoencoders

* Supervised learning uses explicit labels/correct
output in order to train a network.

— E.g., classification of images.

* Unsupervised learning relies on data only.

— Key point is to produce a useful embedding.

— The embedding encodes structure such as word
similarity and some relationships.

— Still need to define a loss — this is an implicit
supervision.

Autoencoders: Structure

* Encoder: compress input into a latent-space of
usually smaller dimension. h = f(x)

* Decoder: reconstruct input from the latent
space. r=g(f(x)) with r as close to x as possible

Original Input Latent Representation Reconstructed Output
q — Encoder — — Decoder — -‘ {
X r

Blog: https://towardsdatascience.com/deep-inside-autoencoders-7e41f319999f

h

Autoencoders

 Compare PCA/SVD

— PCA takes a collection of vectors (images) and produces a
usually smaller set of vectors that can be used to
approximate the input vectors via linear combination.

— Very efficient for certain applications.
— Fourier and wavelet compression is similar.

* Neural network autoencoders
— Can learn nonlinear dependencies
— Can use convolutional layers
— Can use transfer learning

Who is more powerful?

e An autoencoder with linear decoder and MSE
loss function learns the same subspace as PCA

* Nonlinear encoder/decoder functions yield

more powerful nonlinear generalizations of
PCA

Regularized autoencoders

* Use a loss model that encourages properties
other than copying the input to the output

— Sparsity of representation
* L1 or KL regularization

— Smallness of the derivative of the representation
* Contractive autoencoder

— Robustness to noise or missing inputs

* Denoising autoencoder

Sparse autoencoders

Construct a loss function to penalize activations
within a layer.

Usually regularize the weights of a network, not
the activations.

Individual nodes of a trained model that activate
are data-dependent.

— Different inputs will result in activations of different
nodes through the network.

Selectively activate regions of the network
depending on the input data.

Sparse autoencoders

* Construct a loss function to penalize

activations the network.

— L1 Regularization: Penalize the absolute value of
the vector of activations a in layer h for
observation £ +4) [a"]

— KL divergence: Use cross-entropy between
average activation and desired activation

L(x.3)+) KL (pllp;)
J

Small derivatives of representation

* Arrange for similar inputs to have similar activations.

— |.e., the derivative of the hidden layer activations
are small with respect to the input.
e Contractive autoencoders make the feature extraction

function (ie. encoder) resist infinitesimal perturbations of the
input.

——— Training observa tions
" AN A . (h) n2 "~.¢"A Learne d recons truction
L (.\'. X)+ A Z ’ V A (\)H Similar inputs function
- ' re contracted - Linear identity function
[to a constant (perfect reconstruction)
withi
ghborhood

) ' GG

Small derivatives of representation

* Contractive autoencoders make the feature
extraction function (ie. encoder) resist
infinitesimal perturbations of the input.

e |llustration:

Denoising autoencoder

* A denoising autoencoder (DAE) is one that
receives a corrupted data point as input and is
trained to predict the original, uncorrupted
data point as its output

* Learn the reconstructed distribution
— Choose a training sample from the training data

— Obtain corrupted version from corruption process

— Use training sample pair to estimate
reconstruction

Pencoder (A |

Input

Denoising autoencoder

Hidden layer (code)

X) Pdecoder(X | h) d

C: corruption proocess

(introduce noise) %
@ L = - 10g Psecoder
Reconstruction

Denoising

Autoencoder
Autoencoder

Denoising autoencoders learn a
manifold

X A corrupted point is
local mapped back to
the original point

Autoencoders: Applications

* Denoising: input clean image + noise and
train to reproduce the clean image.

Encoder —>5—> Decoder |

38

Autoencoders: Applications

* Image colorization: input black and white and
train to produce color images

39

Autoencoders: Applications

e Watermark removal

40

Properties of Autoencoders

e Data-specific: Autoencoders are only able to
compress data similar to what they have been
trained on.

* Lossy: The decompressed outputs will be
degraded compared to the original inputs.

* Learned automatically from examples: It is
easy to train specialized instances of the
algorithm that will perform well on a specific

type of input.

Capacity

* As with other NNs, overfitting is a problem when
capacity is too large for the data.

* Autoencoders address this through some
combination of:

— Bottleneck layer — fewer degrees of freedom than in
possible outputs.

— Training to denoise.
— Sparsity through regularization.
— Contractive penalty.

Bottleneck layer (undercomplete)

Suppose input images are n x n and the latent
spaceism<nxn.

Then the latent space is not sufficient to
reproduce all images.

Needs to learn an encoding that captures the
important features in training data, sufficient
for approximate reconstruction.

Reconstructed image

aaaaaaaaaaa
eeeeeeeeeeeeee

Simple bottleneck layer in Keras

— input_img = Input(shape=(784,))
— encoding_dim = 32

— encoded = Dense(encoding_dim,
activation='relu')(input_img)

— decoded = Dense(784, activation='sigmoid')(encoded)
— autoencoder = Model(input_img, decoded)

 Maps 28x28 images into a 32 dimensional vector.

* Can also use more layers and/or convolutions.

zlzl/jeldlrlelals]z
7]zl /jol4]/]v]a]s]7

Denoising autoencoders

e Basic autoencoder trains to minimize the loss
oetween x and the reconstruction g(f(x)).

* Denoising autoencoders train to minimize the
oss between x and g(f(x+w)), where w is
random noise.

e Same possible architectures, different training
data.

. Kaggle has a dataset on damaged documents

IIEIIII

https://www.kaggle.com/c/denoising-dirty-documents

Takeaway-3: Autoencoders

* Autoencoders allow the nonlinear representation
and learn high quality embeddings

* Advantage of denoising autoencoder: simpler to
implement-requires adding one or two lines of
code to regular autoencoder-no need to compute
Jacobian of hidden layer

e Various of applications of AE

Lab this week

 T-SNE plots on MNIST, ex.19.2

