CS 307: Random Forests



Today’s goal

* Decision trees

 Random forest (RF)

* Tuning the hyperparameters of a RF
* Feature interpretation in a RF



Decision Trees

* Non-linear classifier
* Easy to use
* Easy to interpret

 Susceptible to overfitting but can be avoided



Anatomy of a decision tree
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Case Study: To ‘play tennis’ or not.

A new test example:
(Outlook==rain) and (not
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Case Study: To ‘play tennis’ or not.

(Outlook ==overcast) ->?
(Outlook==rain) and (not Windy==false) ->?
(Outlook==sunny) and (Humidity=normal) ->?
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Which attribute to select for splitting?

the distribution of
each class (not attribute)

This is bad splitting...



How do we choose the Attributes?

Which attribute should be used as the test?

Intuitively, you would prefer the

one that separates the training
examples as much as possible.
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Information Gain

* Information gain is one criteria to decide on the attribute.
 Sklearn function:

* https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomFores
tClassifier.html
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https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

Information

Imagine:

1. Someone is about to tell you your own name

2. You are about to observe the outcome of a dice roll
2. You are about to observe the outcome of a coin flip

3. You are about to observe the outcome of a biased coin flip

Each situation have a different amount of uncertainty as to what
outcome you will observe.



Information

* Information:

* reduction in uncertainty (amount of surprise in the outcome)

|
I(E) =log, =—log, p(x)
p(x)
If the probability of this event happening is small and it happens

the information is large.

e Observing the outcome of a coin flip is head — [=-log,1/2=1

* Observe the outcome of a dice is 6 —> [=-log,1/6=2.58
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Entropy

« The expected amount of information when observing the output of a random
variable X

H(X)=E(I(X)) =), p()I(x,) == p(x,)log, p(x,)

If there X can have 8 outcomes and all are equally likely

H(X)== —Zl/Slogzl/S =3 bits



Entropy

e Equality holds when all outcomes are equally likely

* The more the probability distribution deviates from uniformity

the lower the entropy

entropy
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Entropy, purity

* Entropy measures the purity

The distribution is less uniform
-> Entropy is lower
-> The node is purer
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Conditional entropy

H(X):_Zp(xi)logz p(xi)
H(X\Y)=—ZP(yJ)H(X\Y=y,-)

- _Zp(yj)zp(xl’ | y;)log, p(x;|y;)



Information gain

o IG(X,Y)=H(X)-H(X|Y) =H(Y)-H(Y|X)

Reduction in uncertainty by knowing Y

Information gain:
(information before split) — (information after split)
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Example
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IG(X1,Y) = H(Y) - H(Y|X1)

Which one do we choose X1 or X27?

H(Y) =-(5/10)log(5/10) -5/10log(5/10) =1
H(Y|X1) = P(XI=T)H(Y|X1=T) + P(X1=F) H(Y|X1=F)
= 4/10 (1log 1 + 0 log 0) +6/10 (5/6log 5/6 +1/6log1/6)

=0.39

Information gain (X1,Y)= 1-0.39=0.61
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Which one do we choose?

m|m |44
n|4|m |+

Information gain (X1,Y)=0.61
Information gain (X2,Y)=0.12

Pick the variable which provides
the most information gain about Y

Pick X1
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Recurse on branches

One branch

The other branch

m|m |44

n|la|Tm| 4
+

Rl NN
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Caveats

 The number of possible values influences the information gain.

* The more possible values, the higher the gain (the more likely it is to form small,
but pure partitions)



Purity (diversity) measures

 Purity (Diversity) Measures:
e — Gini (population diversity) Gini index =1 - ) (P(z
e — Information Gain

e — Chi-square Test



Overfitting

* You can perfectly fit to any training data
e Zero bias, high variance

* Two approaches:

e 1. Stop growing the tree when further splitting the data does not yield an
improvement

e 2. Grow a full tree, then prune the tree, by eliminating nodes.
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Decision Trees

* Recall:
* Node splitting criteria — information gain
* Binary tree
e K-d tree
e Can we search for the best tree?



KD Tree

« Every node (except leaves) represents a hyperplane
that divides the space into two parts.

* Points to the left (right) of this hyperplane represent the
left (right) sub-tree of that node.
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KD Tree - Example

Split by x-coordinate: split by a vertical line that
has approximately half the points left or on, and
half right.
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KD Tree - Example

Split by y-coordinate: split by a horizontal line that
has half the points below or on and half above.
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KD Tree - Example

Split by x-coordinate: split by a vertical line that
has half the points left or on, and half right.
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KD Tree - Example

Split by y-coordinate: split by a horizontal line that
has half the points below or on and half above.
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Example — using median
(data stored at the |leaves)

™

v e




Example — using median
(data stored at the leaves)
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Example — using median
(data stored at the |leaves)
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Example — using median
(data stored at the |leaves)
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Example — using median
(data stored at the |leaves)
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Example — using median
(data stored at the |leaves)
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Example — using median
(data stored at the |leaves)
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Example — using median

(data stored at the |leaves)
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Example — using median
(data stored at the |leaves)
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Application - using median
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Application - using median
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Application - using median
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Application - using median
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Application - using median
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Bagging

* Bagging or bootstrap aggregation a technique for reducing the
variance of an estimated prediction function.

* For classification, a committee of trees each
e cast a vote for the predicted class.



Bootstrap

The basic idea:

Randomly draw datasets with replacement from the
training data, each sample the same size as the original training set
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Bagging
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Bagging: an simulated example

* Generated a sample of size N = 30, with two classes and p =5
features, each having a standard Gaussian distribution with
pairwise Correlation 0.95.

* The response Y was generated according to
*Pr(Y=1/x1<0.5)=0.2,
* Pr(Y=0/x1>0.5) =0.8.



Bagging

Notice the bootstrap trees are different than the original tree

Original Tree b=1 b=2
x.1<0.395 x.1<0.555 x.2 <0.205

£E i s |

b=3 b=4 b=5
x.2<0.285 x.3 <0.985 x4 <-136
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Random forest classifier

 Random forest classifier, an extension to bagging which uses de-
correlated trees.



Random Forest Classifier

Training Data

M features

N examples



Random Forest Classifier

Create bootstrap samples
from the training data

M features—|—>-
»-

N examples
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Random Forest Classifier

Construct a decision tree

Location
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M featu res—|—>
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Random Forest Classifier

At each node in choosing the split feature
choose only among m<M features
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Random Forest Classifier

Create decision tree
from each bootstrap sample

M features—|—>

N examples
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Random Forest Classifier

Location
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Random Forest Classifier

[ Random j = [Decision j X number of trees 4 (Bagging j-l- [
Forest Tree
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Random Forest Classifier

A Random Forest is a modified form of bagging that creates ensembles of
independent decision tree stumbs.

* To decorrelate the trees, we:

1. train each tree on a separate bootstrap sample of the full training set
(same as in bagging).

2. for each tree, at each split, we randomly select a set of | predictors from
the full set of predictors.

3. From amongst the J predictors, we select the optimal predictor and the
optimal corresponding threshold for the split.



Random Forest Classifier

* Why called “random” forest?
* Bagging introduces randomness into the rows of the data

e Random forest introduces randomness into the rows and columns of
the data

 Combined, this provides a more diverse set of trees that almost
always lowers our prediction error



Decision Trees

e Recall --

* To learn a decision tree model, we take a greedy approach:

1.
2.

Start with an empty decision tree (undivided feature space)

Choose the ‘optimal’ predictor on which to split and choose the
‘optimal’ threshold value for splitting by applying a splitting criterion,
purity of the regions for classification.

Recurse on each new node until stopping condition is met

For classification, we label each region in the model with the label of
the class to which the plurality of the points within the region belong

(For regression, we predict with the average of the output values of the
training points contained in the region.)



Pros and Cons of Decision Trees

Strengths = Weaknesses -
» Small trees are easy to interpret « Large trees can be difficult to interpret
« Trees scale well to large N (fast!!) « All splits depend on previous splits (i.e.

capturing interactions a@@; additive models ®
Can handle data of all types (i.e., requires P s sy ®

little, if any, preprocessing) « Trees are step functions (i.e., binary splits)

Automatic variable selection - Single trees typically have poor predictive

aCCuracy

Can handle missing data

« Single trees have high variance (easy to

Completely nonparametric o
P y & overfit to training data)
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Random Forest Classifier

e Recall --

A Random Forest is a modified form of bagging that creates ensembles of independent
decision tree stumps.

* To decorrelate the trees, we:

1. train each tree on a separate bootstrap sample of the full training set (same as
in bagging).

2. for each tree, at each split, we randomly select a set of ] predictors from the full
set of predictors.

3. From amongst the J predictors, we select the optimal predictor and the optimal
corresponding threshold for the split.



Pros and Cons of Random Forests

Strengths = Weaknesses -

 Competitive performance. e Although accurate, often cannot compete with the

e Remarkably good "out-of-the box" (very little tuning
required).

accuracy of advanced boosting algorithms.

e Can become slow on large data sets.

extra validation). with various tools such as variable importance, partial

* Typically does not overfit. dependence plots, LIME, etc.).
¢ Robust to outliers.

e Handles missing data (imputation not required).
e Provide automatic feature selection.
e Minimal preprocessing required.
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