CS 307: Random Forests
Today’s goal

• Decision trees
• Random forest (RF)
• Tuning the hyperparameters of a RF
• Feature interpretation in a RF
Decision Trees

• Non-linear classifier
• Easy to use
• Easy to interpret
• Susceptible to overfitting but can be avoided
Anatomy of a decision tree

Each node is a test on one attribute.

Possible attribute values of the node.

Leaves are the decisions.
Anatomy of a decision tree

Each node is a test on one attribute

Possible attribute values of the node

Leaves are the decisions

Sample size

Outlook

Overcast

Sunny

Humidity

High

Normal

Windy

True

False

Your data gets smaller

No

Yes

No

Yes
Case Study: To ‘play tennis’ or not.

A new test example:
(Outlook==rain) and (not Windy==false)

Pass it on the tree
-> Decision is?
Case Study: To ‘play tennis’ or not.

- **Outlook**:
 - sunny
 - overcast
 - rain

- **Humidity**:
 - high
 - normal
 - **Yes**

- **Windy**:
 - true
 - false
 - **Yes**

Rules:
- (Outlook == overcast) -> ?
- (Outlook == rain) and (not Windy == false) -> ?
- (Outlook == sunny) and (Humidity == normal) -> ?
Which attribute to select for splitting?

The distribution of each class (not attribute)

This is bad splitting...
How do we choose the Attributes?

Which attribute should be used as the test?

Intuitively, you would prefer the one that separates the training examples as much as possible.
Information Gain

• Information gain is one criteria to decide on the attribute.
• Sklearn function:
Information

• Imagine:

• 1. Someone is about to tell you your own name
• 2. You are about to observe the outcome of a dice roll
• 2. You are about to observe the outcome of a coin flip
• 3. You are about to observe the outcome of a biased coin flip

• Each situation have a different *amount of uncertainty* as to what outcome you will observe.
Information

• Information:

• reduction in uncertainty (amount of surprise in the outcome)

\[I(E) = \log_2 \frac{1}{p(x)} = -\log_2 p(x) \]

If the probability of this event happening is small and it happens the information is large.

• Observing the outcome of a coin flip is head \[I = -\log_2 \frac{1}{2} = 1 \]

• Observe the outcome of a dice is 6 \[I = -\log_2 \frac{1}{6} = 2.58 \]
Entropy

- The *expected amount of information* when observing the output of a random variable X

\[
H(X) = E(I(X)) = \sum_i p(x_i)I(x_i) = -\sum_i p(x_i) \log_2 p(x_i)
\]

If there X can have 8 outcomes and all are equally likely

\[
H(X) = -\sum_i 1/8 \log_2 1/8 = 3 \text{ bits}
\]
Entropy

• Equality holds when all outcomes are equally likely

• The more the probability distribution deviates from uniformity the lower the entropy
Entropy, purity

• Entropy measures the purity

4 +
4 -

8 +
0 -

The distribution is less uniform
-> Entropy is lower
-> The node is purer
Conditional entropy

\[H(X) = -\sum_{i} p(x_i) \log_2 p(x_i) \]

\[H(X \mid Y) = -\sum_{j} p(y_j)H(X \mid Y = y_j) \]

\[= -\sum_{j} p(y_j) \sum_{i} p(x_i \mid y_j) \log_2 p(x_i \mid y_j) \]
Information gain

\[IG(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \]

Reduction in uncertainty by knowing \(Y \)

Information gain:
(information before split) – (information after split)
Example

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Labels</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>X2</td>
<td>Y</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>+</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>+</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>+</td>
</tr>
</tbody>
</table>

Which one do we choose X1 or X2?

\[
\text{IG}(X1,Y) = H(Y) - H(Y|X1)
\]

\[
H(Y) = -(5/10) \log(5/10) -5/10\log(5/10) = 1
\]

\[
H(Y|X1) = P(X1=T)H(Y|X1=T) + P(X1=F)H(Y|X1=F)
\]

\[
= 4/10 (1\log 1 + 0 \log 0) +6/10 (5/6\log 5/6 +1/6\log1/6)
\]

\[
= 0.39
\]

Information gain (X1,Y)= 1-0.39=0.61
Which one do we choose?

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>Y</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>+</td>
<td>1</td>
</tr>
</tbody>
</table>

Information gain (X1,Y)= 0.61
Information gain (X2,Y)= 0.12

Pick the variable which provides the most information gain about Y
Pick X1
Recurse on branches

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>Y</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>+</td>
<td>1</td>
</tr>
</tbody>
</table>

One branch

The other branch
Caveats

• The number of possible values influences the information gain.

• The more possible values, the higher the gain (the more likely it is to form small, but pure partitions)
Purity (diversity) measures

• Purity (Diversity) Measures:
 • – Gini (population diversity) Gini index = $1 - \sum (P(x = k))^2$
 • – Information Gain
 • – Chi-square Test
Overfitting

• You can perfectly fit to any training data
• Zero bias, high variance

• Two approaches:
 • 1. Stop growing the tree when further splitting the data does not yield an improvement
 • 2. Grow a full tree, then prune the tree, by eliminating nodes.
Decision Trees

• Recall:
 • Node splitting criteria – information gain
 • Binary tree
 • K-d tree
 • Can we search for the best tree?
KD Tree

- Every node (except leaves) represents a hyperplane that divides the space into two parts.
- Points to the left (right) of this hyperplane represent the left (right) sub-tree of that node.
KD Tree - Example

Split by x-coordinate: split by a vertical line that has approximately half the points left or on, and half right.
KD Tree - Example

Split by y-coordinate: split by a horizontal line that has half the points below or on and half above.
KD Tree - Example

Split by x-coordinate: split by a vertical line that has half the points left or on, and half right.
KD Tree - Example

Split by y-coordinate: split by a horizontal line that has half the points below or on and half above.
Example – using median (data stored at the leaves)
Example – using median (data stored at the leaves)
Example – using median (data stored at the leaves)
Example – using median
(data stored at the leaves)
Example – using median (data stored at the leaves)
Example – using median (data stored at the leaves)
Example – using median (data stored at the leaves)
Example – using median (data stored at the leaves)
Example – using median
(data stored at the leaves)
Application - using median

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike</td>
<td>25</td>
<td>3.9</td>
</tr>
<tr>
<td>Clayton</td>
<td>30</td>
<td>3.8</td>
</tr>
<tr>
<td>Terri</td>
<td>29</td>
<td>2.5</td>
</tr>
<tr>
<td>Debra</td>
<td>42</td>
<td>3.7</td>
</tr>
<tr>
<td>Dan</td>
<td>25</td>
<td>3.75</td>
</tr>
<tr>
<td>Mark</td>
<td>22</td>
<td>3.7</td>
</tr>
<tr>
<td>Julia</td>
<td>24</td>
<td>4.0</td>
</tr>
<tr>
<td>Arnold</td>
<td>22</td>
<td>3.9</td>
</tr>
<tr>
<td>Zeke</td>
<td>23</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Discriminator order: Name, age, GPA, name, age, GPA,
Application - using median
Application - using median

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>GPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aron</td>
<td>22</td>
<td>3.8</td>
</tr>
<tr>
<td>Clayton</td>
<td>30</td>
<td>3.6</td>
</tr>
<tr>
<td>Dan</td>
<td>25</td>
<td>3.75</td>
</tr>
<tr>
<td>Debra</td>
<td>42</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Discriminator order: Name, age, GPA, name, age, GPA,
Application - using median
Application - using median

Discriminator order: Name, age, GPA, name, age, GPA, ...
Bagging

• Bagging or *bootstrap aggregation* a technique for reducing the variance of an estimated prediction function.

• For classification, a *committee* of trees each
 • cast a vote for the predicted class.
Bootstrap

The basic idea:

Randomly draw datasets with replacement from the training data, each sample the same size as the original training set.
Bagging

\[Z = \{(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\} \]

\[Z^{*b} \] where \(b = 1, \ldots, B \).

The prediction at input \(x \) when bootstrap sample \(b \) is used for training

\[
\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x).
\]
Bagging: an simulated example

• Generated a sample of size $N = 30$, with two classes and $p = 5$ features, each having a standard Gaussian distribution with pairwise Correlation 0.95.

• The response Y was generated according to

 $\Pr(Y = 1|x_1 \leq 0.5) = 0.2,$

 $\Pr(Y = 0|x_1 > 0.5) = 0.8.$
Bagging

Notice the bootstrap trees are different than the original tree
Random forest classifier

• Random forest classifier, an extension to bagging which uses *de-correlated* trees.
Random Forest Classifier

Training Data

N examples

M features
Random Forest Classifier

Create bootstrap samples from the training data

N examples

M features
Random Forest Classifier

Construct a decision tree

N examples

M features
Random Forest Classifier

At each node in choosing the split feature choose only among $m<M$ features.
Random Forest Classifier

Create decision tree from each bootstrap sample

N examples \[\rightarrow\] M features \[\rightarrow\] Create decision tree from each bootstrap sample
Random Forest Classifier

M features

N examples

Take the majority vote
Random Forest Classifier

Random Forest = Decision Tree \times \text{number of trees} + \text{Bagging} + \text{Random selection of features to split each node}
A Random Forest is a modified form of bagging that creates ensembles of independent decision tree stumps.

To decorrelate the trees, we:

1. train each tree on a separate bootstrap sample of the full training set (same as in bagging).

2. for each tree, at each split, we randomly select a set of J predictors from the full set of predictors.

3. From amongst the J predictors, we select the optimal predictor and the optimal corresponding threshold for the split.
Random Forest Classifier

• Why called “random” forest?
• Bagging introduces randomness into the rows of the data
• Random forest introduces randomness into the rows and columns of the data
• Combined, this provides a more diverse set of trees that almost always lowers our prediction error
Decision Trees

• Recall --

• To learn a decision tree model, we take a greedy approach:
 1. Start with an empty decision tree (undivided feature space)
 2. Choose the ‘optimal’ predictor on which to split and choose the ‘optimal’ threshold value for splitting by applying a splitting criterion, purity of the regions for classification.
 3. Recurse on each new node until stopping condition is met
 4. For classification, we label each region in the model with the label of the class to which the plurality of the points within the region belong
 5. (For regression, we predict with the average of the output values of the training points contained in the region.)
Pros and Cons of Decision Trees

Strengths 😊

- Small trees are easy to interpret
- Trees scale well to large N (fast!!)
- Can handle data of all types (i.e., requires little, if any, preprocessing)
- Automatic variable selection
- Can handle missing data
- Completely nonparametric

Weaknesses 😞

- Large trees can be difficult to interpret
- All splits depend on previous splits (i.e., capturing interactions 😊, additive models 😞)
- Trees are step functions (i.e., binary splits)
- Single trees typically have poor predictive accuracy
- Single trees have high variance (easy to overfit to training data)
Random Forest Classifier

• Recall --

• A **Random Forest** is a modified form of bagging that creates ensembles of independent decision tree stumps.

• To decorrelate the trees, we:

 1. train each tree on a separate bootstrap sample of the full training set (same as in bagging).

 2. for each tree, **at each split**, we **randomly** select a set of \(J \) predictors from the full set of predictors.

 3. From amongst the \(J \) predictors, we select the optimal predictor and the optimal corresponding threshold for the split.
Pros and Cons of Random Forests

Strengths 😊

- Competitive performance.
- Remarkably good "out-of-the box" (very little tuning required).
- Built-in validation set (don't need to sacrifice data for extra validation).
- Typically does not overfit.
- Robust to outliers.
- Handles missing data (imputation not required).
- Provide automatic feature selection.
- Minimal preprocessing required.

Weaknesses 😞

- Although accurate, often cannot compete with the accuracy of advanced boosting algorithms.
- Can become slow on large data sets.
- Less interpretable (although this is easily addressed with various tools such as variable importance, partial dependence plots, LIME, etc.).