Learning to control
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Topics

Scamper through basic reinforcement learning ideas

Imitation learning
® and its variants and problems
® as structure learning



First learned steering controller
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An autonomous Land vehicle in a neural Network, Pomerleau 1989



Markov Decision Process

action
a,

Assumption: agent gets to observe the state

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Abbeel slides



Model

At time O, environment samples initial state
® agent is in that state

Then for t=0 till done

agent chooses action

environment samples new state conditioned on action, old state
environment samples reward conditioned on action, old state, new state
agent gets that reward and moves into new state

Policy
® what action to take in each state
® this could be stochastic

Maximise total discounted reward



Examples

a Cleaning robot

o Walking robot

a Pole balancing
a Games: tetris, backgammon

a Server management

a Shortest path problems

a Model for animals, people

Abbeel slides



Markov Decision Process (S, A, T, R, H)

ﬁ
D

Agent

state r,_eward action
s.. i (),

Given

' 5. | Environment ]“—

= S: set of states

= A: set of actions

= T:SxAxSx{0,l,..,H 2 [0l1], T(sas)=P(S., =s|s, =s, a,=a)

= R SxAxSx{0,1,....,H} >R R(sas’) =reward for (S,, =5, S,=s, a, =a)
= H: horizon over which the agent will act

Goal:

= Find7 :Sx{0, I, ..., H} > A that maximizes expected sum of rewards, i.e.,

H
7" = arg max E[Z Ri(Si, Ay, Sit)|m]
w
t=0

This is usually discounted by gamma T Abbeel slides



Canonical Example: Grid World

The agent lives in a grid

Walls block the agent’s path 3 .
The agent’s actions do not
always go as planned: 2 =1
And this 1s y g P
true for 80% of the time, the action North
the other takes the agent North ]
three; 80% (if there is no wall there)
of the time
you €0 |0% of the time, North takes the ] ) i 4
where you agent West; 10% East
intended, 10% . . . .
. If there is a wall in the direction
at right angles 0.8
one way the agent would have been taken,
10% the other  the agent stays put 0.1 0.1

Big rewards come at the end



Now assume

® We know
® T(s,a,s’)
® R(s,a,s’)

® What should our policy be?



Solving MDPs

= In an MDP, we want an optimal policy 7*: S x O:H — A

= A policy m gives an action for each state for each time

t=5=H

l I - L] - 1 : I - L] t=4
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t=1
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2 | =
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= An optimal policy maximizes expected sum of rewards

= Contrast: In deterministic, want an optimal plan, or sequence of actions,
from start to a goal



Outline

= Optimal Control

givenan MDP (S, A, T, R, 7, H)

find the optimal policy 7

s Exact Methods:

= Value Iteration

= Policy Iteration



Value iteration

® Idea:
® value of a state=expected reward of proceeding optimally from that state
® if we knew the value of each state, choosing an action is easy
® take the one with the best expected yield
® cf HMM inference reasoning

® Idea:

® we could estimate the value of a state
® set the value of every state to something
® now for a given state, compute the expected value of best action
® replace value with that and continue



Value Iteration

= Algorithm:
= Start with V"(s) =0 foralls.
= Fori=I, ..., H

Given V* calculate for all states s € S:

Vi1 (s) « maaxZ;T(S,a,S') R(s,a,8") + V(")

S

s This is called a value update or Bellman update/back-up

*
s V, (S) = the expected sum of rewards accumulated when
starting from state s and acting optimally for a horizon of i steps



Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

VALUES AFTER 1 ITERATIONS




Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

VALUES AFTER 2 ITERATIONS




Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

VALUES AFTER 3 ITERATIONS




Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

e

VALUES AFTER 4 ITERATIONS




Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

‘IIIIIII|IIIHHI||IHIHHI|IIIIIII|

VALUES AFTER 5 ITERATIONS




Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

VALUES AFTER 100 ITERATIONS




Value Iteration in Gridworld

noise = 0.2, v =0.9, two terminal states with R = +1 and -1

VALUES AFTER 1000 ITERATIONS




Exercise 1: Effect of discount, noise

-10.00(|(-10.00(|(-10.00|||-10.00|||-10.00

(a) Prefer the close exit (+1), risking the cliff (-10) (1) v=0.I,noise = 0.5
(b) Prefer the close exit (+1), but avoiding the cliff (-10) (2) v=0.99,noise = 0
(c) Prefer the distant exit (+10), risking the cliff (-10) (3) v=0.99, noise = 0.5

(d) Prefer the distant exit (+10), avoiding the cliff (-10) (4) v=0.1,noise =0



Exercise 1 Solution

m .

(a) Prefer close exit (+1), risking the cliff (-10) --- v = 0.1, noise =0




Exercise 1 Solution

(b) Prefer cIose exit (+I), avoiding the cliff (-IO) -- v = 0.1, noise = 0.5



Exercise 1 Solution
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(c) Prefer distant exit (+1), risking the cliff (-10) -- v = 0.99, noise =0




Exercise 1 Solution
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(d) Prefer distant exit (+1), avoid the cliff (-10) -- v = 0.99, noise = 0.5




Value lteration Convergence

Theorem. Value iteration converges. At convergence, we have found
the optimal value function V* for the discounted infinite horizon
problem, which satisfies the Bellman equations

VS eS: Vi(s)= m?XZ’I’(s,a,s’) {I—i(s,a,s’) + ~ \*(s')}

Now we know how to act for infinite horizon with discounted rewards!
* Run value iteration till convergence.
* This produces V*, which in turn tells us how to act, namely following:

7*(s) = argmaxaea » .. T(s,a,s")|[R(s,a,s") +yV*(s')]

Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at
a state s is the same action at all times. (Efficient to store!)

25



But it’s not really all over...

® What if:

® there are lots of states?
® we don’t know T?
® we don’t know R?



Policy iteration

® Idea:

® cvaluate some policy
® then make it better



Policy Evaluation

s Recall value iteration iterates:

Vi1 (s) = max 3 T(s, . )[R(s. ) + V7 (")
S

= Policy evaluation:
\/77_T|_1(5) — ZT(S, 7(s), ) [R(s, w(s),s) + ﬁ,"V,;ﬂ(s/)]

= At convergence:

Vs VT‘-(S) — Z T(S, 71'(5), 5’) [H.(s, 71'(5), S/) -1- ’)”VW(S/)]



Exercise 2

Consider a stochastic policy u(als), where p(als) is the probability of taking
action a when in state s. Which of the following is the correct value iteration
update to perform policy evaluation for this stochastic policy?

1. erl(s) —max, ., T(s,a,s)(R(s,a,s") +~+V/(s))

2. Vii(s) <= 220 20 mlals)T (s, a, 8) (R(s, a, 8") + V("))
3. V?il( ) A Z :u'(a| )111&)(3 (93 a, 3’)([{(3,(1, S’) + ’Yviu(sl))



Policy lteration

= Alternative approach:

= Step 1: Policy evaluation: calculate utilities for some
fixed policy (not optimal utilities!) until convergence

= Step 2: Policy improvement: update policy using one-
step look-ahead with resulting converged (but not
optimal!) utilities as future values

= Repeat steps until policy converges

= [his is policy iteration
= [t's still optimal!

= Can converge faster under some conditions



Policy Evaluation Revisited

= /dea 1: modify Bellman updates

Vo (s) =0
Vi 1(s) — Y T(s,m(s),s)R(s,m(5), ") + Vi (s)]

= |dea 2: it s just a linear system, solve with
Matlab (or whatever),
variables: V7(s),
constants: T, R

Vs VT(s) =Y T(s,n(s),s)[R(s,7(s),8) +~vV™(s)]



Policy Iteration Guarantees

Policy Iteration iterates over:

= Policy evaluation: with fixed currenl policy , find values
with simplified Bellman updates:
* [terate until values converge

VIE (8) «— Y T(s,m(8), ) [R(s, 7 (5),8") 4+~ V" (s")

* Policy improvement: with fixed utilities, find the best
action according to one-step lock-ahead

mr41(s) = argmax ) T(s,a,s") (R(s,a,s") + vV (s")
a r L 4

Theorem. Policy iteration is guaranteed to converge and at convergence, the current policy
and its value function are the optimal policy and the optimal value function!

Proof sketch:
(1) Guarantee to converge: In every step the policy improves. This means that a given policy can be

encountered at most once. This means that after we have iterated as many times as there are different
policies, i.e., (number actions)number states) e must be done and hence have converged.
(2) Optimal at convergence: by definition of convergence, at convergence ,,,(s) = m,(s) for all states s.

This means vs V7(s) = max, Yo T(s, a. ") [R(.‘i.n,s') + A 1;.'“(.5')]
Hence "+ satisfies the Bellman equation, which means 1+ is equal to the optimal value function V*.



Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s,, a,, r,, s;,a,, fy, ...

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
V™(s) =E Z'ytrt|so =8,

>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E |:Z 'yt'rt|sg = 8,ap = a, 7!']

t>0

Fei-Fei+Johnson+Yeung 17



Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair: _ _

Q"(s,a) = m7?rlX]E Z’Yt’rdso =S,a0 =Q,T
t>0

Q* satisfies the following Bellman equation:
Q(,0) = Evne [r + ymaxQ"(s',)ls,q

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a)

The optimal policy n* corresponds to taking the best action in any state as specified by Q*

Fei-Fei+Johnson+Yeung 17



Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
.
Q’H‘l(sa a’) =E [T T ’YHlaE},XQz(S y 4 )|87 CL:|

Q. will converge to Q* as i -> infinity

What's the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Fei-Fei+Johnson+Yeung 17



Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(s,a) =Eg~¢ ['r' + 7 max Q*(s',ad)ls, a]

Forward Pass
Loss function: L;(0;) = Eg a0p() [(¥i = Q(s,056;))?]

;4 lteratively try to make the Q-value
where y; = Eg g [7' + ’)’mae}x Q(s',a’;0i-1)|s,a close to the target value (y) it

should have, if Q-function
corresponds to optimal Q* (and

Gradient update (with respect to Q-function parameters 6):

Vo,Li(0;) = Eg amp():s/ e ['r + 7y max Q(s',a';0;-1) — Q(s,a;0;))Ve,Q(s,a; 90]

Fei-Fei+Johnson+Yeung 17



Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s,, a, r,, s,,,) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute

to multiple weight updates
=> greater data efficiency

Fei-Fei+Johnson+Yeung 17



Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand

Can we learn a policy directly, e.g. finding the best policy from a collection of
policies?

Fei-Fei+Johnson+Yeung 17



Policy Gradients

Formally, let's define a class of parametrized policies: II = {mg,0 € R™}

For each policy, define its value:

Z vYire|me

J(0) =E

We want to find the optimal policy 6* = arg max J(0)

How can we do this?
Gradient ascent on policy parameters!

Fei-Fei+Johnson+Yeung 17



REINFORCE algorithm

Mathematically, we can write:

J(0) = Errp(rio) [7(7)]
= /T(T)p(’r; 0)dr

Where r(r) is the reward of a trajectory 7 = (30, ap,To,S1y - - )

Fei-Fei+Johnson+Yeung 17



REINFORCE algorithm

Expected reward: J(0) = Ernp(r;0) 7 (7)]
— /r(T)p(T; 0)dr

Intractable! Gradient of an
expectation is problematic when p

Now let's differentiate this: V,.J () :/T(T)VQP(T;O)dT

T depends on 6
o Vop(T; 0)
However, we can use a nice trick: v p(r: ) = p(7; 9) = p(7;0) Vg logp(7;0)
If we inject this back: p(7;0)
VoJ(0) = / (r(7)Ve log p(7;6)) p(7;0)dr
4 Can estimate with
= E,p(r:) [T(T) Vo log p(T; 6)] Monte Carlo sampling

Fei-Fei+Johnson+Yeung 17



VoJ(0) = / (r(7) Vs log p(7;8)) p(r; 0)dr

REINFORCE algorithm .y r0) [F(7) Vo log p(r: )]

Can we compute those quantities without knowing the transition probabilities?

We have: p(r; ) = HP(8t+1|3taat)W6(at|8t)
£>0

Thus: logp(r;0) = ¥ _ logp(se+1lst, ar) + log me(aclst)

t>0 Doesn’t depend on

And when differentiating: Vologp(r;6) = > Vglogme(acls:)  yransition probabilities!
t>0

Therefore when sampling a trajectory z, we can estimate J(0) with

VeJ(0) = Z r(7)Velog me(at|st)

t>0

Fei-Fei+Johnson+Yeung 17



Intuition

Gradient estimator: Vg J () ~ Z r(7)Velog mg(at|st)
t>0

Interpretation:
- If r(z) is high, push up the probabilities of the actions seen
- If r(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?

Fei-Fei+Johnson+Yeung 17



Variance reduction
Gradient estimator:  VJ(6) & ZT(T)VQ log mg(a|st)

t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

VoJ(0) ~ Z (Z rt/) Vo log g (at|st)

t>0 \t'>t
Second idea: Use discount factor y to ignore delayed effects

VoJ (0 Z (Z 'yt “tp, ) Vo log mg(as|st)

t>0 \t'>t

Fei-Fei+Johnson+Yeung 17



Variance reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

VeJ(0) ~ Z (Z A Tty — b(st)) Vo log mg(a|ss)

t>0 \t'>t

Fei-Fei+Johnson+Yeung 17



How to choose the baseline?

VoJ (0 T (T ~ "ty — b( st)) Vi log mg(a:|st)

t>0 >t

A simple baseline: constant moving average of rewards experienced so far
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla
REINFORCE”

Fei-Fei+Johnson+Yeung 17



How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from

that state.
Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s, if Q™ (s, a:) — V7 (s¢)
Is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator: VyJ(0) ~ Z(Q”e(st, ar) — V7™ (s¢))Velogmg(at|st)
t>0

Fei-Fei+Johnson+Yeung 17



Actor-Critic Algorithm

Problem: we don’'t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust
- Also alleviates the task of the critic as it only has to learn the values
of (state, action) pairs generated by the policy
- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an
action was better than expected A™(s,0) = Q7 (s,0) — V™ (s)

Fei-Fei+Johnson+Yeung 17



Why so many RL algorithms?

* Different tradeoffs
» Sample efficiency

» Stability & ease of use

fit a model/
. . ﬁ estimate return
* Different assumptions

generate

» Stochastic or deterministic?

samples (i.e.

* Continuous or discrete? run the policy)

* Episodic or infinite horizon?

t improve the

olic
* Different things are easy or hard in i

different settings
» Easier to represent the policy?
* Easier to represent the model?

Levine, ND



Blog post entitled: “Why deep reinforcement learning doesn’t work™

https://www.alexirpan.com/2018/02/14/rl-hard.html



