Learning to control

D.A. Forsyth, UIUC
Topics

- Scamper through basic reinforcement learning ideas
- Imitation learning
 - and its variants and problems
 - as structure learning
First learned steering controller

An autonomous Land vehicle in a neural Network, Pomerleau 1989

“ALVINN:”
Markov Decision Process

Assumption: agent gets to observe the state

[Drawing from Sutton and Barto, Reinforcement Learning: An Introduction, 1998]

Abbeel slides
Model

- At time 0, environment samples initial state
 - agent is in that state
- Then for t=0 till done
 - agent chooses action
 - environment samples new state conditioned on action, old state
 - environment samples reward conditioned on action, old state, new state
 - agent gets that reward and moves into new state

- Policy
 - what action to take in each state
 - this could be stochastic
- Maximise total discounted reward
Examples

- Cleaning robot
- Walking robot
- Pole balancing
- Games: tetris, backgammon
- Server management
- Shortest path problems
- Model for animals, people
Markov Decision Process (S, A, T, R, H)

Given
- S: set of states
- A: set of actions
- T: $S \times A \times S \times \{0, 1, ..., H\} \rightarrow [0, 1]$, $T_t(s, a, s') = P(s_{t+1} = s' | s_t = s, a_t = a)$
- R: $S \times A \times S \times \{0, 1, ..., H\} \rightarrow \mathbb{R}$, $R_t(s, a, s') = \text{reward for } (s_{t+1} = s', s_t = s, a_t = a)$
- H: horizon over which the agent will act

Goal:
- Find $\pi: S \times \{0, 1, ..., H\} \rightarrow A$ that maximizes expected sum of rewards, i.e.,

$$\pi^* = \arg \max_\pi \mathbb{E} \left[\sum_{t=0}^{H} R_t(S_t, A_t, S_{t+1}) | \pi \right]$$

This is usually discounted by gamma
And this is true for the other three; 80% of the time you go where you intended, 10% at right angles one way, 10% the other.

- The agent lives in a grid
- Walls block the agent’s path
- The agent’s actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Big rewards come at the end
Now assume

- We know
 - $T(s, a, s')$
 - $R(s, a, s')$
- What should our policy be?
Solving MDPs

- In an MDP, we want an optimal policy π^*: $S \times 0:H \rightarrow A$
 - A policy π gives an action for each state for each time

- An optimal policy maximizes expected sum of rewards

- Contrast: In deterministic, want an optimal plan, or sequence of actions, from start to a goal
Outline

- Optimal Control

 given an MDP \((S, A, T, R, \gamma, H)\)

 find the optimal policy \(\pi^*\)

- Exact Methods:

 - Value Iteration

 - Policy Iteration
Value iteration

• Idea:
 • value of a state=expected reward of proceeding optimally from that state
 • if we knew the value of each state, choosing an action is easy
 • take the one with the best expected yield
 • cf HMM inference reasoning

• Idea:
 • we could estimate the value of a state
 • set the value of every state to something
 • now for a given state, compute the expected value of best action
 • replace value with that and continue
Value Iteration

- **Algorithm:**
 - Start with $V_0^*(s) = 0$ for all s.
 - For $i=1, \ldots, H$

 Given V_i^*, calculate for all states $s \in S$:

 $$V_{i+1}^*(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + V_i^*(s') \right]$$

 - This is called a value update or Bellman update/back-up

- $V_i^*(s)$ = the expected sum of rewards accumulated when starting from state s and acting optimally for a horizon of i steps.
Value Iteration in Gridworld

noise = 0.2, $\gamma = 0.9$, two terminal states with $R = +1$ and -1

VALUES AFTER 1 ITERATIONS
Value Iteration in Gridworld
noise = 0.2, γ = 0.9, two terminal states with $R = +1$ and -1

VALUES AFTER 2 ITERATIONS
Value Iteration in Gridworld

noise = 0.2, γ = 0.9, two terminal states with R = +1 and -1

VALUES AFTER 3 ITERATIONS
Value Iteration in Gridworld

noise = 0.2, $\gamma = 0.9$, two terminal states with $R = +1$ and -1

VALUES AFTER 4 ITERATIONS
Value Iteration in Gridworld
noise = 0.2, $\gamma = 0.9$, two terminal states with $R = +1$ and -1

VALUES AFTER 5 ITERATIONS
Value Iteration in Gridworld
noise = 0.2, $\gamma = 0.9$, two terminal states with $R = 1$ and -1

VALUES AFTER 100 ITERATIONS
Value Iteration in Gridworld

\[
\begin{array}{cccc}
0.64 & 0.74 & 0.85 & 1.00 \\
0.57 & \text{gray} & 0.57 & -1.00 \\
0.49 & 0.43 & 0.43 & 0.28 \\
\end{array}
\]

VALUES AFTER 1000 ITERATIONS

noise = 0.2, \(\gamma = 0.9 \), two terminal states with R = +1 and -1
Exercise 1: Effect of discount, noise

(a) Prefer the close exit (+1), risking the cliff (-10)
(b) Prefer the close exit (+1), but avoiding the cliff (-10)
(c) Prefer the distant exit (+10), risking the cliff (-10)
(d) Prefer the distant exit (+10), avoiding the cliff (-10)

(1) $\gamma = 0.1$, noise = 0.5
(2) $\gamma = 0.99$, noise = 0
(3) $\gamma = 0.99$, noise = 0.5
(4) $\gamma = 0.1$, noise = 0
(a) Prefer close exit (+1), risking the cliff (-10) --- $\gamma = 0.1$, noise = 0
Exercise 1 Solution

(b) Prefer close exit (+1), avoiding the cliff (-10) -- $\gamma = 0.1$, noise = 0.5
Exercise 1 Solution

(c) Prefer distant exit (+1), risking the cliff (-10) -- $\gamma = 0.99$, noise = 0
Exercise 1 Solution

(d) Prefer distant exit (+1), avoid the cliff (-10) -- $\gamma = 0.99$, noise = 0.5
Value Iteration Convergence

Theorem. Value iteration converges. At convergence, we have found the optimal value function V^* for the discounted infinite horizon problem, which satisfies the Bellman equations

$$\forall S \in S : \quad V^*(s) = \max_A \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

- Now we know how to act for infinite horizon with discounted rewards!
 - Run value iteration till convergence.
 - This produces V^*, which in turn tells us how to act, namely following:

$$\pi^*(s) = \arg \max_{a \in A} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

- Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at a state s is the same action at all times. (Efficient to store!)
But it’s not really all over…

• What if:
 • there are lots of states?
 • we don’t know T?
 • we don’t know R?
Policy iteration

- **Idea:**
 - evaluate some policy
 - then make it better
Policy Evaluation

- Recall value iteration iterates:

\[V_{i+1}^*(s) \leftarrow \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i^*(s')] \]

- Policy evaluation:

\[V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^\pi(s')] \]

- At convergence:

\[\forall s \, \, V^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^\pi(s')] \]
Exercise 2

Consider a stochastic policy $\mu(a|s)$, where $\mu(a|s)$ is the probability of taking action a when in state s. Which of the following is the correct value iteration update to perform policy evaluation for this stochastic policy?

1. $V_{i+1}^\mu(s) \leftarrow \max_a \sum_{s'} T(s, a, s')(R(s, a, s') + \gamma V_i^\mu(s'))$

2. $V_{i+1}^\mu(s) \leftarrow \sum_{s'} \sum_a \mu(a|s)T(s, a, s')(R(s, a, s') + \gamma V_i^\mu(s'))$

3. $V_{i+1}^\mu(s) \leftarrow \sum_a \mu(a|s) \max_{s'} T'(s, a, s')(R(s, a, s') + \gamma V_i^\mu(s'))$
Policy Iteration

- Alternative approach:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is policy iteration
 - It’s still optimal!
 - Can converge faster under some conditions
Policy Evaluation Revisited

- **Idea 1**: modify Bellman updates

 \[V_0^\pi(s) = 0 \]

 \[V_{i+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_i^\pi(s')] \]

- **Idea 2**: it’s just a linear system, solve with Matlab (or whatever), variables: \(V^\pi(s) \), constants: \(T, R \)

 \[\forall s \quad V^\pi(s) = \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V^\pi(s')] \]
Policy Iteration Guarantees

Policy Iteration iterates over:

- Policy evaluation: with fixed current policy \(\pi \), find values with simplified Bellman updates:
 - Iterate until values converge
 \[
 V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]
 \]

- Policy improvement: with fixed utilities, find the best action according to one-step look-ahead
 \[
 \pi_{k+1}(s) = \arg \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]
 \]

Theorem. Policy iteration is guaranteed to converge and at convergence, the current policy and its value function are the optimal policy and the optimal value function!

Proof sketch:

1. **Guarantee to converge**: In every step the policy improves. This means that a given policy can be encountered at most once. This means that after we have iterated as many times as there are different policies, i.e., \((\text{number actions}) \times (\text{number states})\), we must be done and hence have converged.

2. **Optimal at convergence**: by definition of convergence, at convergence \(\pi_{k+1}(s) = \pi_k(s) \) for all states \(s \).
 - This means \(\forall s \ V^{\pi_k}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right] \)
 - Hence \(V^{\pi_k} \) satisfies the Bellman equation, which means \(V^{\pi_k} \) is equal to the optimal value function \(V^* \).
Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) $s_0, a_0, r_0, s_1, a_1, r_1, \ldots$

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy from state s:

$$V^\pi(s) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi \right]$$

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$Q^\pi(s, a) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]$$

Bellman equation

The optimal Q-value function \(Q^* \) is the maximum expected cumulative reward achievable from a given (state, action) pair:

\[
Q^*(s, a) = \max_{\pi} \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]
\]

\(Q^* \) satisfies the following Bellman equation:

\[
Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]
\]

Intuition: if the optimal state-action values for the next time-step \(Q^*(s', a') \) are known, then the optimal strategy is to take the action that maximizes the expected value of \(r + \gamma Q^*(s', a') \)

The optimal policy \(\pi^* \) corresponds to taking the best action in any state as specified by \(Q^* \)
Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update

\[Q_{i+1}(s, a) = \mathbb{E} \left[r + \gamma \max_{a'} Q_i(s', a') \mid s, a \right] \]

\(Q_i \) will converge to \(Q^* \) as \(i \to \infty \)

What’s the problem with this?
Not scalable. Must compute \(Q(s, a) \) for every state-action pair. If state is e.g. current game state pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate \(Q(s, a) \). E.g. a neural network!
Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

\[Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right] \]

Forward Pass

Loss function: \(L_i(\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[(y_i - Q(s, a; \theta_i))^2 \right] \)

where \(y_i = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a \right] \)

Backward Pass

Gradient update (with respect to Q-function parameters \(\theta \)):

\[\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot); s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i) \right] \nabla_{\theta_i} Q(s, a; \theta_i) \]
Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions \((s_t, a_t, r_t, s_{t+1})\) as game (experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

Each transition can also contribute to multiple weight updates => greater data efficiency
Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection of policies?
Policy Gradients

Formally, let’s define a class of parametrized policies: \(\Pi = \{ \pi_\theta, \theta \in \mathbb{R}^m \} \)

For each policy, define its value:

\[
J(\theta) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi_\theta \right]
\]

We want to find the optimal policy \(\theta^* = \arg \max_\theta J(\theta) \)

How can we do this?
Gradient ascent on policy parameters!
REINFORCE algorithm

Mathematically, we can write:

\[J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)] \]

\[= \int_{\tau} r(\tau) p(\tau; \theta) d\tau \]

Where \(r(\tau) \) is the reward of a trajectory \(\tau = (s_0, a_0, r_0, s_1, \ldots) \)
REINFORCE algorithm

Expected reward: \[J(\theta) = \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau)] \]
\[= \int r(\tau) p(\tau; \theta) d\tau \]

Now let's differentiate this: \[\nabla_\theta J(\theta) = \int r(\tau) \nabla_\theta p(\tau; \theta) d\tau \]

However, we can use a nice trick: \[\nabla_\theta p(\tau; \theta) = p(\tau; \theta) \frac{\nabla_\theta p(\tau; \theta)}{p(\tau; \theta)} = p(\tau; \theta) \nabla_\theta \log p(\tau; \theta) \]

If we inject this back:
\[\nabla_\theta J(\theta) = \int (r(\tau) \nabla_\theta \log p(\tau; \theta)) p(\tau; \theta) d\tau \]
\[= \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau) \nabla_\theta \log p(\tau; \theta)] \]

Intractable! Gradient of an expectation is problematic when \(p(\tau; \theta) \) depends on \(\theta \)

Can estimate with Monte Carlo sampling
REINFORCE algorithm

\[\nabla_{\theta} J(\theta) = \int_{\tau} (r(\tau) \nabla_{\theta} \log p(\tau; \theta)) p(\tau; \theta) d\tau \]
\[= \mathbb{E}_{\tau \sim p(\tau; \theta)} [r(\tau) \nabla_{\theta} \log p(\tau; \theta)] \]

Can we compute those quantities without knowing the transition probabilities?

We have:

\[p(\tau; \theta) = \prod_{t \geq 0} p(s_{t+1}|s_t, a_t) \pi_\theta(a_t|s_t) \]

Thus:

\[\log p(\tau; \theta) = \sum_{t \geq 0} \log p(s_{t+1}|s_t, a_t) + \log \pi_\theta(a_t|s_t) \]

And when differentiating:

\[\nabla_{\theta} \log p(\tau; \theta) = \sum_{t \geq 0} \nabla_{\theta} \log \pi_\theta(a_t|s_t) \]

 Doesn't depend on transition probabilities!

Therefore when sampling a trajectory \(\tau \), we can estimate \(J(\theta) \) with

\[\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_\theta(a_t|s_t) \]
Intuition

Gradient estimator: \[\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \]

Interpretation:
- If \(r(\tau) \) is high, push up the probabilities of the actions seen
- If \(r(\tau) \) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. **But in expectation, it averages out!**

However, this also suffers from high variance because credit assignment is really hard. Can we help the estimator?
Variance reduction

Gradient estimator: \[\nabla_\theta J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_\theta \log \pi_\theta(a_t|s_t) \]

First idea: Push up probabilities of an action seen, only by the cumulative future reward from that state

\[\nabla_\theta J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} r_{t'} \right) \nabla_\theta \log \pi_\theta(a_t|s_t) \]

Second idea: Use discount factor \(\gamma \) to ignore delayed effects

\[\nabla_\theta J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t'-t} r_{t'} \right) \nabla_\theta \log \pi_\theta(a_t|s_t) \]
Variance reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For example, if rewards are all positive, you keep pushing up probabilities of actions.

What is important then? Whether a reward is better or worse than what you expect to get

Idea: Introduce a baseline function dependent on the state. Concretely, estimator is now:

$$
\nabla_\theta J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t'-t} r_{t'} - b(s_t) \right) \nabla_\theta \log \pi_\theta(a_t|s_t)
$$
How to choose the baseline?

\[\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t'-t} r_{t'} - b(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \]

A simple baseline: constant moving average of rewards experienced so far from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla REINFORCE”
How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if this action was better than the expected value of what we should get from that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action \(a_t \) in a state \(s_t \) if \(Q^\pi(s_t, a_t) - V^\pi(s_t) \) is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator: \(\nabla_\theta J(\theta) \approx \sum_{t \geq 0} (Q^{\pi_\theta}(s_t, a_t) - V^{\pi_\theta}(s_t)) \nabla_\theta \log \pi_\theta(a_t|s_t) \)
Actor-Critic Algorithm

Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning by training both an **actor** (the policy) and a **critic** (the Q-function).

- The actor decides which action to take, and the critic tells the actor how good its action was and how it should adjust.
- Also alleviates the task of the critic as it only has to learn the values of (state, action) pairs generated by the policy.
- Can also incorporate Q-learning tricks e.g. experience replay.
- **Remark:** we can define by the **advantage function** how much an action was better than expected:

$$A^\pi(s,a) = Q^\pi(s,a) - V^\pi(s)$$
Why so many RL algorithms?

- Different tradeoffs
 - Sample efficiency
 - Stability & ease of use
- Different assumptions
 - Stochastic or deterministic?
 - Continuous or discrete?
 - Episodic or infinite horizon?
- Different things are easy or hard in different settings
 - Easier to represent the policy?
 - Easier to represent the model?
Blog post entitled: “Why deep reinforcement learning doesn’t work”

https://www.alexirpan.com/2018/02/14/rl-hard.html