Linear Classifiers and
the Linear SVM

D.A. Forsyth, UIUC

Linear Classifiers

e Key ideas
® data (x_i,y_1)
® x | are feature vectors, dimension d
® vy iare labels, and y_i1s either 1 or -1
® (uery is X
® predicted label is:

sign(a’x + b)

Bias, variance, irreducible error

® Assume we choose a classifier from some family
® ¢g, a particular linear classifier from the family of linear classifiers

® The error on future data decomposes into three terms:

Bias + Variance + Irreducible error

|

The error caused by the
fact that even the best Unavoidable error
classifier in the family (recall alien example)

The error caused by the fact
that we didn’t get the best
classifier in the family, just nearly

makes errors

Question: how to choose a and b?

® Rough answer:
® split dataset into train/test

® choose a and b to get good behavior on train
® how? details?
® cvaluate on test

Question: how to choose a and b?

Choose a and b to get good behavior on train
® write a cost function C(a, b) and find best

The cost function:

® g¢enerally, each training example should contribute evenly
® average of per example costs

C(aT,b) = (%) ZN:c(a, b, %)

1=1

Desirable properties c(a, b, x_1)

. A
® Write: vi=a x; +0b
® sign is the predicted label
® magnitude is prop to distance to line

® We want:

® Prediction <> true label:

® c(a,b, x_1) should be big. Should get bigger when magnitude is
bigger, but not too fast

® Prediction == label, mag small:
® c(a,b, x_i) should be non-zero, getting smaller as magnitude gets
bigger
® Prediction==label, mag big:
® c(a, b, x_i) should be zero

The hinge loss

c(a,b,x;) = max(1l — (aTXZ- +b) y;,0) = max(1 — v;9;,0)

Feature vector for example

T
True label for example v, = a X; 4+ b

The hinge loss

c(a,b,x;) = max(1l — (a’x; + b) y;,0) = max(1 — ;y;,0)

® Notice:

® Prediction <> true label:

® c(a,b,x_1)1s big. Gets bigger when magnitude grows, but not too fast
® Prediction == label, mag small:

® c(a,b, x_1) is non-zero, getting smaller as magnitude gets bigger
® Prediction==label, mag big:

® c(a,b,x_1)1s zero

Regularization

® The cost function drives us towards a classifier that does

well on training data
® but what about future data?

® (ases:
® future data item is correctly classified, large mag
® nothing to do
® future data item is correctly classified, small mag
® OR is incorrectly classified
® Notice:
® hinge loss on this data item (which we don’t know) can be scaled
® and this doesn’t change the classification of the training data

if (aTx+b)y <1 and s > 0, we have c(sa, sb,x;) = (1 — s (a’ x; + b) y;

Regularization

e [DEA:

® Hinge loss on future data items can be reduced by scaling a, b
® Equiv:

® f{ind “small” a, b that produce low cost on training
® Equiv:

® penalize large a during training

® Which gets us

Regularization weight

|

N T
S(a,b; 1) = | (1/N) Z max(0,1 —y; (a'x; + b)) | + A (?) .

! I

Regularization term

i=1

Data term; empirical risk

Choosing a classifier

® Minimize this expression with respect a, b

N T
S(a,b; L) = [(I/N) ; max (0, 1 —y; (aTxi + b))] 4+ A (373) .

x I

Data term; empirical risk Regularization term

Choosing a classifier, 11

a
® Write u = { b :| g(U) for cost function

® Usual procedure:

® start at u(O)
® repeat: (z)
® find a descent direction P
® choose a steplength Ui

® update ul b — 4@ e np(’i)

Choosing a classifier, 111

® What is descent direction? Og
® oradient descent: _vu g=— ou1

® Newton’s method:
® second derivatives help choose

® What is steplength?

® small number

® search for a good one

N T
S(a,b;A) = [(I/N) Z max (0, 1 —y; (aTx,- + b))] + A (?) .

i=1

Stochastic gradient descent

® Assume we choose k data items uniformly at random

® compute
1 k

® We have

What 1s the gradient?

Stochastic gradient descent, 11

e [DEA:

® repeat:
® pick one or few data items uniformly at random
® compute gradient using those
® itisn’tright, but
® cxpected value is right
® it’s quick
® take step backward down this gradient
How far? it’s too hard to search because it’s too hard to

evaluate g(u) so fixed, but may change over time
(eg. 1000 steps at 1e-3; 1000 steps at 1e-4; etc).

Convergence: too hard to test; instead,
do this a fixed large number of steps, and monitor error rate

Stochastic gradient descent, 111

e [DEA:

® repeat:
® pick one or few data items uniformly at random

® compute gradient using those Convergence: too hard to test;

® itisn’t right, but instead, do this a fixed large

® expected value is right number of steps, and monitor error rate
® it’s quick
® take step backward down this gradient

General points

® Support vector machine (SVM):

® A linear classifier trained with hinge loss

® SVM’s:
® [Impressively reliable if you have good features
® FEasy and effective
® Good evidence you don’t need to see all the training data
® ie SGD might get you to about the right classifier without seeing all
training data

Getting the regularization weight

® Strategy:
® try various values, choose the one that yields best classifier
® not super sensitive - search by factors of 10

® Remember:

® we can’t evaluate a classifier on data used to train it!
® this makes training and evaluating an SVM slightly elaborate

® (Constraints:
® we need to know how well the final classifier works - split off some data
® for each value of reg. weight, we must evaluate - split off some data
® we may need to monitor - split off some data

For evaluating
final classifier

Initial Dataset

At least one train/test split
for each reg weight

For training
with different
reg weights

Behavior

l -
0.8 [T e N Ems
az =)
= 5 0.6
8 3
7]
% 04rf
o
0.2
0 L 1 1 1 J
0 20 40 60 80 100
Season Season

Fig. 11.3 On the left, the magnitude of the weight vector a at the end of each season for the first training regime described in the text. On the right,
the accuracy on held out data at the end of each season. Notice how different choices of regularization parameter lead to different magnitudes of
a; how the method isn’t particularly sensitive to choice of regularization parameter (they change by factors of 100); how the accuracy settles down
fairly quickly: and how overlarge values of the regularization parameter do lead to a loss of accuracy

Stochastic gradient descent

e [DEA:
® repeat:
® pick one or few data items uniformly at random Convergence: too hard to test;
® compute gradient using those instead, do this a fixed large

e take step backward down this gradient number of steps, and monitor error rate

Gradient

Aa if vy > 1
) 191
Vas = { —1;X; + Aa otherwise

VS = { 0 iy >1

—1y; otherwise

® Notice:
® this “makes sense”

A little line geometry...

e All this applies to planes, hyperplanes, etc.

® casier to draw for lines

X a vector representing point on x, y plane

aTX —+ b=10 equation satisfied by all points on the line

a vector normal to the line

lalx + b

(a’a)

distance from point x to the line

YilY; > 1 In this case, push line away from example

V.5 = A\a

VS =0

VA
—

YilYi

VaS = —y;x; + \a

VS = —y;

In this case, turn line and push towards example

Some practical examples

Whitening features is a very good 1dea
important to translate as well - why?

Notice one interesting point
® the gradient is not zero, even if you get every training example right
® why this is a “good thing”

Notice shrinking effect of lamda

Why this 1s a support vector machine

® Simple geometric argument suggests
® very few examples are important in linearly separable case
® where zero error is possible for a linear classifier

® This extends to other cases
® the hyperplane is determined by a very small set of examples
® these are sometimes known as support vectors

Notice we have a recipe...

We could apply to other cost functions

We could apply SGD to other predictors

® npeural networks, etc.

Procedure for selecting reg. weight is general
® we’ll see other cases

Logistic regression

C(a’ b’ Xz') — 10g (1 + 6_[(aTx7;—|—b)yi])

® This i1s very like the hinge loss when plotted

® but smooth

S(a, b; \) Zlog (1 +el@ Xz*’))y%]) + (é)aTa

Logistic regression - gradient

® Pick a batch of one example

A
S(a,b:A) = log (1 + e [@x0wl) (Dl
Vi — aTXZ' —+ b
V.S = yp—— Vv X; + Aa
VS = Y

1 4+ e 7iVi

Logistic regression - gradient

® Notice:

® this “makes sense”
® s very like linear SVM gradient

— e Vil , Aa if vy; > 1

Vad = 1 + e—7ivi YiXi + Aa Vad' = { —y;X; + Aa otherwise
—e~ Vil / 0 if vy, > 1

VpS = 1+ e—ivi Yi Ve { —1; otherwise

Some practical examples

Whitening features is a very good 1dea
important to translate as well - why?

Notice one interesting point
® the gradient is not zero, even if you get every training example right
® why this is a “good thing”

Notice shrinking effect of lamda

Mult1 class classification with an SVM

® SVM is naturally a binary classifier
® Bad option:

® expand class labels as a binary vector

® use one SVM to predict each bit

® this doesn’t work - if you get bit wrong, you’re in trouble
® Better options:

® (One v one

® Onevall
® neither is perfect

