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Background
• There are three methods to establish a classifier

a) Model a classification rule directly

Examples: k-NN, decision trees, perceptron, SVM 

b) Model the probability of class memberships given input data
Example: multi-layered perceptron with the cross-entropy cost

c) Make a probabilistic model of data within each class

Examples: naive Bayes, model based classifiers

• a) and b) are examples of discriminative classification
• c) is an example of generative classification
• b) and c) are both examples of probabilistic classification
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Probability Basics
• Prior, conditional and joint probability

– Prior probability: 
– Conditional probability: 
– Joint probability: 
– Relationship:
– Independence: 

• Bayesian Rule
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Probabilistic Classification
• Establishing a probabilistic model for classification

– Discriminative model

– Generative model

• MAP classification rule
– MAP: Maximum A Posterior
– Assign x to c* if 

• Generative classification with the MAP rule
– Apply Bayesian rule to convert: 

),,  ,   )( 1 n1L X(Xc,,cC|CP ×××=×××= XX

),,  ,   )( 1 n1L X(Xc,,cCC|P ×××=×××= XX

Lc,,cccc|cCP|cCP ×××=¹==>== 1
**   ,    )(  )( xXxX

)()(
)(

)()( )( CPC|P
P

CPC|P|CP X
X

XX µ=



Feature Histograms

x

C1
C2

P(x)



Posterior Probability

x

P(C|x)

1

0



11

Naïve Bayes
• Bayes classification

Difficulty: learning the joint probability                  

• Naïve Bayes classification
– Making the assumption that all input attributes are independent

– MAP classification rule
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Naïve Bayes
• Naïve Bayes Algorithm (for discrete input attributes)

– Learning Phase: Given a training set S, 

Output: conditional probability tables; for             elements
– Test Phase: Given an unknown instance                    , 

Look up tables to assign the label c* to X’ if
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Example
• Example: Play Tennis
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Example
• Learning Phase

Outlook Play=Yes Play=No
Sunny 2/9 3/5
Overcast 4/9 0/5
Rain 3/9 2/5

Temperature Play=Yes Play=No
Hot 2/9 2/5
Mild 4/9 2/5
Cool 3/9 1/5

Humidity Play=Yes Play=No

High 3/9 4/5
Normal 6/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5
Weak 6/9 2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14
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Example
• Test Phase

– Given a new instance, 
x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

– Look up tables

– MAP rule

P(Outlook=Sunny|Play=No) = 3/5
P(Temperature=Cool|Play==No) = 1/5
P(Huminity=High|Play=No) = 4/5
P(Wind=Strong|Play=No) = 3/5
P(Play=No) = 5/14

P(Outlook=Sunny|Play=Yes) = 2/9
P(Temperature=Cool|Play=Yes) = 3/9
P(Huminity=High|Play=Yes) = 3/9
P(Wind=Strong|Play=Yes) = 3/9
P(Play=Yes) = 9/14

P(Yes|x’): [P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes) = 0.0053

P(No|x’): [P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)]P(Play=No) = 0.0206

Given the fact P(Yes|x’) < P(No|x’), we label x’ to be “No”.
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Relevant Issues
• Violation of Independence Assumption

– For many real world tasks,
– Nevertheless, naïve Bayes works surprisingly well anyway!

• Zero conditional probability Problem
– If no example contains the attribute value
– In this circumstance,                                        during test 
– For a remedy, conditional probabilities estimated with
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Relevant Issues
• Continuous-valued Input Attributes

– Numberless values for an attribute 
– Conditional probability modeled with the normal distribution

– Learning Phase: 
Output:         normal distributions and 

– Test Phase:
• Calculate conditional probabilities with all the normal distributions
• Apply the MAP rule to make a decision
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Conclusions
• Naïve Bayes based on the independence assumption

• Training is very easy and fast; just requiring considering each attribute 
in each class separately

• Test is straightforward; just looking up tables or calculating conditional 
probabilities with normal distributions 

• A popular generative model
• Performance competitive to most of state-of-the-art classifiers even in 

presence of violating independence assumption
• Many successful applications, e.g., spam mail filtering
• Apart from classification, naïve Bayes can do more…



Applications

• Digit Recognition

• X1,…,Xn Î {0,1} (Black vs. White pixels)

• Y Î {5,6} (predict whether a digit is a 5 or a 6)

Classifier 5



The Bayes Classifier

• Why did this help?  Well, we think that we might be able to specify how features 
are “generated” by the class label

Normalization Constant

Likelihood Prior



The Bayes Classifier

• Let’s expand this for our digit recognition task:

• To classify, we’ll simply compute these two probabilities and predict based on which one is 
greater



Model Parameters

• For the Bayes classifier, we need to “learn” two functions, the likelihood and the 
prior

• How many parameters are required to specify the prior for our digit recognition 
example? (Supposing that each image is 30x30 pixels)



Model Parameters

• The problem with explicitly modeling P(X1,…,Xn|Y) is that there are usually way 
too many parameters:
• We’ll run out of space
• We’ll run out of time
• And we’ll need tons of training data (which is usually not available)



The Naïve Bayes Model

• The Naïve Bayes Assumption: Assume that all features are independent given the 
class label Y
• Equationally speaking:



Why is this useful?

• # of parameters for modeling P(X1,…,Xn|Y):

§ 2(2n-1)

• # of parameters for modeling P(X1|Y),…,P(Xn|Y)

§ 2n



Naïve Bayes Training

• Now that we’ve decided to use a Naïve Bayes classifier, we need to train it with some data:

MNIST Training Data



Naïve Bayes Training

• Training in Naïve Bayes is easy:
• Estimate P(Y=v) as the fraction of records with Y=v

• Estimate P(Xi=u|Y=v) as the fraction of records with Y=v for which Xi=u

• (This corresponds to Maximum Likelihood estimation of model parameters)



Naïve Bayes Training

• In practice, some of these counts can be zero
• Fix this by adding “virtual” counts:

• (This is like putting a prior on parameters and doing MAP estimation instead 
of MLE)
• This is called Smoothing



Naïve Bayes Training

• For binary digits, training amounts to averaging all of the training fives together and all of the 
training sixes together.



Naïve Bayes Classification



Evaluating classification algorithms

I tell you that it achieved 95% accuracy on my data.

Is your technique a success?



Types of errors

• But suppose that
• The 95% is the correctly classified pixels
• Only 5% of the pixels are actually edges
• It misses all the edge pixels

• How do we count the effect of different types of error?



Types of errors

Prediction
Edge            Not edge

True
Positive

False 
Negative
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Positive
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Negative
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True  Positive

Two parts to each:  whether you got it correct or not, and what you guessed.  For 
example for a particular pixel, our guess might be labelled…

Did we get it correct? 
True, we did get it 
correct.

False  Negative
Did we get it correct?         
False, we did not get it 
correct.

or maybe it was labelled as one of the others, maybe…

What did we say?                   
We said ‘positive’, i.e. edge.

What did we say?                   
We said ‘negative, i.e. not 
edge.



Sensitivity and Specificity
Count up the total number of each label (TP, FP, TN, FN) over a large 
dataset. In ROC analysis, we use two statistics:

Sensitivity = 
TP

TP+FN

Specificity = 
TN

TN+FP

Can be thought of as the likelihood of 
spotting a positive case when 
presented with one.

Or… the proportion of edges we find.

Can be thought of as the likelihood of 
spotting a negative case when 
presented with one.

Or… the proportion of non-edges that 
we find



Sensitivity =                       = ? 
TP

TP+FN
Specificity =                       =  ? 

TN

TN+FP

Prediction

Ground 
Truth

1

1 0

0

60 30

2080
80+20 = 100 cases 
in the dataset were 
class 0 (non-edge)

60+30 = 90 cases in 
the dataset were class 
1 (edge)

90+100 = 190 examples 
(pixels) in the data overall



The ROC space

1 - Specificity

Sensitivity

This is edge detector B

This is edge detector A1.0

0.0 1.0

Note



The ROC Curve
Draw a ‘convex hull’ around many points:

1 - Specificity

Sensitivity This point is not 
on the convex 
hull.



ROC Analysis

1 - specificity

sensitivity

All the optimal detectors lie 
on the convex hull.

Which of these is best 
depends on the ratio of 
edges to non-edges, and  
the different cost of 
misclassification

Any detector on this side 
can lead to a better 
detector by flipping its 
output.

Take-home point : You should always quote sensitivity and specificity for 
your algorithm, if possible plotting an ROC graph.  Remember also though, 

any statistic you quote should be an average over a suitable range of tests for 
your algorithm.



Holdout estimation
• What to do if the amount of data is limited?

• The holdout method reserves a certain amount for 
testing and uses the remainder for training

èUsually: one third for testing, the rest for training



Holdout estimation

• Problem: the samples might not be representative
• Example: class might be missing in the test data

• Advanced version uses stratification
• Ensures that each class is represented with approximately 

equal proportions in both subsets



Repeated holdout method

• Repeat process with different subsamples
è more reliable

• In each iteration, a certain proportion is randomly selected for training 
(possibly with stratificiation)

• The error rates on the different iterations are averaged to yield an 
overall error rate



Repeated holdout method

• Still not optimum: the different test sets overlap

• Can we prevent overlapping?

• Of course!



Cross-validation

• Cross-validation avoids overlapping test sets
• First step: split data into k subsets of equal size
• Second step: use each subset in turn for testing, the remainder for 

training

• Called k-fold cross-validation



Cross-validation

• Often the subsets are stratified before the cross-
validation is performed

• The error estimates are averaged to yield an 
overall error estimate



More on cross-validation
• Standard method for evaluation: stratified ten-fold cross-

validation
• Why ten?
• Empirical evidence supports this as a good choice to get an accurate 

estimate
• There is also some theoretical evidence for this

• Stratification reduces the estimate’s variance
• Even better: repeated stratified cross-validation
• E.g. ten-fold cross-validation is repeated ten times and results are 

averaged (reduces the variance)



Leave-One-Out cross-validation

• Leave-One-Out:
a particular form of cross-validation:
• Set number of folds to number of training instances
• I.e., for n training instances, build classifier n times

• Makes best use of the data
• Involves no random subsampling 
• Very computationally expensive
• (exception: NN)



Leave-One-Out-CV and stratification

• Disadvantage of Leave-One-Out-CV: stratification is not possible
• It guarantees a non-stratified sample because there is only one instance in 

the test set!



Recap
• We defined a Bayes classifier but saw that it’s intractable to compute 

P(X1,…,Xn|Y)
• We then used the Naïve Bayes assumption – that everything is independent given 

the class label Y
• A natural question:  is there some happy compromise where we only assume that 

some features are conditionally independent?
• Stay Tuned…

• Naïve Bayes is: 
• Really easy to implement and often works well
• Often a good first thing to try
• Commonly used as a “punching bag” for smarter algorithms

• Evaluation of machine learning models


